2.已知扇形的圓心角為72°,半徑為5,則扇形的面積S=5π.

分析 利用扇形的面積計算公式即可得出.

解答 解:72°化為$\frac{2π}{5}$弧度.
∴扇形的面積S=$\frac{1}{2}×\frac{2π}{5}×{5}^{2}$=5π.
故答案為:5π.

點評 本題考查了扇形的面積計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.下列關于算法與程序框圖的說法正確的有(  )
①求解某一類問題的算法是唯一的;
②表達算法的基本邏輯結構包括順序結構、計算結構、條件結構、循環(huán)結構;
③算法的每一步操作必須是明確的,不能有歧義;
④任何一個程序框圖都必須有起止框.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.定義區(qū)間(c,d),[c,d),(c,d],[c,d]的長度均為d-c,其中d>c.已知函數(shù)y=|2x-1|的定義域為[a,b],值域為$[{0,\frac{1}{2}}]$,則區(qū)間[a,b]長度的最大值與最小值的差$lo{g}_{2}\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)$f(x)={x^2}-({a+\frac{1}{a}})x+1$,實數(shù)a>0.
(1)比較a與$\frac{1}{a}$的大;
(2)解關于x的不等式:f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知角α、β頂點在坐標原點,始邊為x軸正半軸.甲:“角α、β的終邊關于y軸對稱”;乙:“sin(α+β)=0”.則條件甲是條件乙的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知集合U={-2,-1,0,1,2},A={1,2},B={-2,-1,2},則A∪(∁UB)={0,1,2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下面說法中,錯誤的是(  )
A.“x,y中至少有一個小于零”是“x+y<0”的充要條件
B.“a2+b2=0”是“a=0且b=0”的充要條件
C.“ab≠0”是“a≠0或b≠0”的充要條件
D.若集合A是全集U的子集,則命題“x∉∁UA”與“x∈A”是等價命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.命題p:關于x的一元二次方程x2+2tx+(2-t)=0有兩個不相等的實數(shù)根,命題q:復平面中復數(shù)z=(t-2)+(t2-2t-3)i對應的點在x軸的下方 若p∧q為假,q為真,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設x1,x2∈R,則|x1-x2|的幾何意義是實數(shù)x1,x2在數(shù)軸上對應的兩點之間的距離,將此結論類比到復數(shù)有“設z1,z2∈C,則|z1-z2|的幾何意義是在復平面內(nèi)對應的兩點之間的距離.

查看答案和解析>>

同步練習冊答案