【題目】一位同學(xué)家里訂了一份報(bào)紙,送報(bào)人每天都在在早上5:20~6:40之間將報(bào)紙送到達(dá),該同學(xué)的爸爸需要早上6:00~7:00之間出發(fā)去上班,則這位同學(xué)的爸爸在離開家前能拿到報(bào)紙的概率是 .
【答案】
【解析】解:如圖所示,
設(shè)送報(bào)人到達(dá)的時(shí)間為x,這位同學(xué)的爸爸在離開家為y;
則(x,y)可以看成平面中的點(diǎn),試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)棣?{(x,y)| ≤x≤ ,6≤y≤7},一個(gè)矩形區(qū)域,面積為SΩ=1× = ,
事件A所構(gòu)成的區(qū)域?yàn)锳={(x,y)| ≤x≤ ,6≤y≤7,x<y}即圖中的陰影部分,
其中A(6,6),C( ,6).B( , ),
△ABC面積為= × × = ,則陰影部分的面積SA= ﹣ = .
則對(duì)應(yīng)的概率P= = .
所以答案是: .
【考點(diǎn)精析】本題主要考查了幾何概型的相關(guān)知識(shí)點(diǎn),需要掌握幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2﹣2x﹣4y+1=0.
(1)求過(guò)點(diǎn)M(3,1)的圓C的切線方程;
(2)若直線l:ax﹣y+4=0與圓C相交于A,B兩點(diǎn),且弦AB的長(zhǎng)為 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系內(nèi),已知A(3,2)是圓C上一點(diǎn),折疊該圓兩次使點(diǎn)A分別與圓上不相同的兩點(diǎn)(異于點(diǎn)A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,若圓C上存在點(diǎn)P,使∠MPN=90°,其中M,N的坐標(biāo)分別為(﹣m,0),(m,0),則實(shí)數(shù)m的取值集合為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知c=acosB+bsinA.
(1)求A;
(2)若a=2,b=c,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如表是某校120名學(xué)生假期閱讀時(shí)間(單位:小時(shí))的頻率分布表,現(xiàn)用分層抽樣的方法從[10,15),[15,20),[20,25),[25,30)四組中抽取20名學(xué)生了解其閱讀內(nèi)容,那么從這四組中依次抽取的人數(shù)是( )
分組 | 頻數(shù) | 頻率 |
[10,15) | 12 | 0,10 |
[15,20) | 30 | a |
[20,25) | m | 0.40 |
[25,30) | n | 0.25 |
合計(jì) | 120 | 1.00 |
A.2,5,8,5
B.2,5,9,4
C.4,10,4,2
D.4,10,3,3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某位同學(xué)在2015年5月進(jìn)行社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了5月1日至5月5日的白天平均氣溫x(°C)與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):
日 期 | 5月1日 | 5月2日 | 5月3日 | 5月4日 | 5月5日 |
平均氣溫x(°C) | 9 | 10 | 12 | 11 | 8 |
銷量y(杯) | 23 | 25 | 30 | 26 | 21 |
(1)若從這五組數(shù)據(jù)中隨機(jī)抽出2組,求抽出的2組數(shù)據(jù)不是相鄰2天數(shù)據(jù)的概率;
(2)請(qǐng)根據(jù)所給五組數(shù)據(jù),求出y關(guān)于x的線性回歸方程 = x+ .
(參考公式: = , = ﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京是我國(guó)嚴(yán)重缺水的城市之一.為了倡導(dǎo)“節(jié)約用水,從我做起”,小明在他所在學(xué)校的2000名同學(xué)中,隨機(jī)調(diào)查了40名同學(xué)家庭中一年的月均用水量(單位:噸),并將月均用水量分為6組:[2,4),[4,6),[6,8),[8,10),[10,12),[12,14]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(Ⅰ)給出圖中實(shí)數(shù)a的值;
(Ⅱ)根據(jù)樣本數(shù)據(jù),估計(jì)小明所在學(xué)校2000名同學(xué)家庭中,月均用水量低于8噸的約有多少戶;
(Ⅲ)在月均用水量大于或等于10噸的樣本數(shù)據(jù)中,小明決定隨機(jī)抽取2名同學(xué)家庭進(jìn)行訪談,求這2名同學(xué)中恰有1人所在家庭的月均用水量屬于[10,12)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩個(gè)不重合的平面α,β和兩條不同直線m,n,則下列說(shuō)法正確的是( )
A.若m⊥n,n⊥α,mβ,則α⊥β
B.若α∥β,n⊥α,m⊥β,則m∥n
C.若m⊥n,nα,mβ,則α⊥β
D.若α∥β,nα,m∥β,則m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1: 的離心率為 ,且經(jīng)過(guò)點(diǎn)M 的直徑C1的長(zhǎng)軸.如圖,C是橢圓短軸端點(diǎn),動(dòng)直線AB過(guò)點(diǎn)C且與圓C2交于A,B兩點(diǎn),CD垂直于AB交橢圓于點(diǎn)D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值,并求此時(shí)直線AB的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com