已知f(x)=
x+1
x2+1
x∈[-1,0)
x∈[0,1]
,則下列函數(shù)的圖象對應函數(shù)正確的個數(shù)為( 。
分析:先作出函數(shù)y=f(x)的圖象,根據(jù)函數(shù)圖象的變換法則可得①②③正確,④不正確,從而得出結論.
解答:解:已知f(x)=
x+1
x2+1
x∈[-1,0)
x∈[0,1]
,它的圖象如圖所示:
函數(shù)y=f(x-1)的圖象是由y=f(x)的圖象向右平移1個單位得到的,故①正確.
函數(shù)y=f(-x)的圖象是由y=f(x)的圖象關于y軸對稱后得到的,故②正確.
函數(shù)y=f(|x|)是偶函數(shù),它的圖象關于y軸對稱,在y軸右側,函數(shù)y=f(|x|)與函數(shù)y=f(x)的圖象相同,
故③正確.
由于y=f(x)的值域為[0,2],函數(shù)y=|f(x)|的圖象與函數(shù)y=f(x)的圖象相同,故④不正確.
故選C.
點評:本小題主要考查函數(shù)與函數(shù)的圖象特征,函數(shù)的值域,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x+1,x∈[-1,0)
x2+1,x∈[0,1]
,則下列函數(shù)的圖象錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若數(shù)學公式,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間數(shù)學公式上的值域為數(shù)學公式,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪基礎知識訓練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:模擬題 題型:解答題

已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù),
(Ⅰ)求實數(shù)a的值組成的集合A;
(Ⅱ)設關于x的方程f(x)=的兩個非零實根為x1、x2,試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:福建省高考真題 題型:解答題

已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù),
(Ⅰ)求實數(shù)a的值組成的集合A;
(Ⅱ)設關于x的方程f(x)=的兩個非零實根為x1、x2,試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案