已知函數(shù)
,則函數(shù)
在點
處切線方程為 ( )
分析:先求出f′(x),欲求出切線方程,只須求出其斜率即可,故先利用導數(shù)求出在x=0處的導函數(shù)值,再結(jié)合導數(shù)的幾何意義即可求出切線的斜率,從而問題解決.
解答:解:∵
,∴f′(x)=-e
(sinx+cosx),
∴f′(0)=-1,
∵f(0)=1,
∴函數(shù)f(x)的圖象在點A(0,1)處的切線方程為y-1=-1×(x-0),
即x+y-1=0
故選B.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知對任意實數(shù)
x,有
f(-
x)=-
f(
x),
g (-
x)=
g(
x),且
x>0時
f′(
x)>0,
g′(
x)>0,
則
x<0時
A.f′(x)>0,g′(x)>0 | B.f′(x)>0,g′(x)<0 |
C.f′(x)<0,g′(x)>0 | D.f′(x)<0,g′(x)<0 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖,從邊長為2a的正方形鐵皮的四個角各截去一個邊長為x的小正方形,再將四邊向上折起,做成一個無蓋的長方體鐵盒,且要求長方體的高度x與底面正方形的邊長的比不超過常數(shù)t,問:x取何值時,長方體的容積V有最大值?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
圓柱形容器,其底面直徑為2m,深度為1 m,盛滿液體后以0.01m3/s的速率放出,求液面高度的變化率
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
直線
相切于點(2,3),則b的值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
曲線
在點
處的傾斜角等于
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
對函數(shù)
作代換
,則總不會改變
的值域的代換是
( )
查看答案和解析>>