【題目】在公比為2的等比數(shù)列{an}中,a2與a3的等差中項(xiàng)是9
(1)求a1的值;
(2)若函數(shù)y=|a1|sin( x+φ),|φ|<π,的一部分圖象如圖所示,M(﹣1,|a1|),N(3,﹣|a1|)為圖象上的兩點(diǎn),設(shè)∠MPN=β,其中P與坐標(biāo)原點(diǎn)O重合,0<β<π,求tan(φ﹣β)的值.

【答案】
(1)解:由題可知 ,又a5=8a2

,

∴a1=


(2)解:∵點(diǎn)M(﹣1,|a1|),在函數(shù)y=|a1|sin( x+φ),|φ|<π的圖象上,

∴sin(﹣ +φ)=1,

又∵|φ|<π,∴φ=

如圖,連接MN,在△MPN中,由余弦定理得

,

又∵0<β<π,∴

∴tan(φ﹣β)=﹣tan =﹣tan( )=﹣2+


【解析】(1)根據(jù)等比數(shù)列和等差數(shù)列的性質(zhì)進(jìn)行求解即可.(2)根據(jù)三角函數(shù)的圖象確實(shí)A,ω和φ的值即可.
【考點(diǎn)精析】利用等比數(shù)列的通項(xiàng)公式(及其變式)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知通項(xiàng)公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=f(x)滿(mǎn)足f(﹣x)+f(x)=0且f(x+1)=f(x﹣1),若x∈(0,1)時(shí),f(x)=log2 ,則y=f(x)在(1,2)內(nèi)是(
A.單調(diào)增函數(shù),且f(x)<0
B.單調(diào)減函數(shù),且f(x)<0
C.單調(diào)增函數(shù),且f(x)>0
D.單調(diào)增函數(shù),且f(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,CC1底面ABC,ACCB,點(diǎn)MN分別是B1C1BC的中點(diǎn).

(1)求證:MB平面AC1N

(2)求證:AC⊥MB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】綠色出行越來(lái)越受到社會(huì)的關(guān)注,越來(lái)越多的消費(fèi)者對(duì)新能源汽車(chē)感興趣但是消費(fèi)者比較關(guān)心的問(wèn)題是汽車(chē)的續(xù)駛里程某研究小組從汽車(chē)市場(chǎng)上隨機(jī)抽取20輛純電動(dòng)汽車(chē)調(diào)查其續(xù)駛里程單次充電后能行駛的最大里程,被調(diào)查汽車(chē)的續(xù)駛里程全部介于50公里和300公里之間,將統(tǒng)計(jì)結(jié)果分成5組: ,繪制成如圖所示的頻率分布直方圖.

求直方圖中m的值;

求本次調(diào)查中續(xù)駛里程在的車(chē)輛數(shù);

若從續(xù)駛里程在的車(chē)輛中隨機(jī)抽取2輛車(chē),求其中恰有一輛車(chē)?yán)m(xù)駛里程在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x |,其在區(qū)間[0,1]上單調(diào)遞增,則a的取值范圍為(
A.[0,1]
B.[﹣1,0]
C.[﹣1,1]
D.[﹣ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分)已知圓有以下性質(zhì):

過(guò)圓上一點(diǎn)的圓的切線(xiàn)方程是.

為圓外一點(diǎn),過(guò)作圓的兩條切線(xiàn),切點(diǎn)分別為,則直線(xiàn)的方程為.

若不在坐標(biāo)軸上的點(diǎn)為圓外一點(diǎn),過(guò)作圓的兩條切線(xiàn),切點(diǎn)分別為,則垂直,即,且平分線(xiàn)段.

(1)類(lèi)比上述有關(guān)結(jié)論,猜想過(guò)橢圓上一點(diǎn)的切線(xiàn)方程(不要求證明);

(2)過(guò)橢圓外一點(diǎn)作兩直線(xiàn),與橢圓相切于兩點(diǎn),求過(guò)兩點(diǎn)的直線(xiàn)方程;

(3)若過(guò)橢圓外一點(diǎn)不在坐標(biāo)軸上)作兩直線(xiàn),與橢圓相切于兩點(diǎn),求證:為定值,且平分線(xiàn)段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某上市股票在30天內(nèi)每股的交易價(jià)格(元)與時(shí)間(天)組成有序數(shù)對(duì),點(diǎn)落在圖中的兩條線(xiàn)段上;該股票在30天內(nèi)的日交易量(萬(wàn)股)與時(shí)間(天)的部分?jǐn)?shù)據(jù)如下表所示,且滿(mǎn)足一次函數(shù)關(guān)系,

4

10

16

22

(萬(wàn)股)

36

30

24

18

那么在這30天中第幾天日交易額最大( )

A. 10 B. 15 C. 20 D. 25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),.

(1)求以線(xiàn)段為鄰邊的平行四邊形的另一頂點(diǎn)的坐標(biāo);

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知⊙O1與⊙O2相交于A(yíng)、B兩點(diǎn),過(guò)點(diǎn)A作⊙O1的切線(xiàn)交⊙O2于點(diǎn)C,過(guò)點(diǎn)B作兩圓的割線(xiàn),分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P. (Ⅰ)求證:AD∥EC;
(Ⅱ)若AD是⊙O2的切線(xiàn),且PA=6,PC=2,BD=9,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案