若點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2:(x-5)2+y2=1上,點(diǎn)R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是   
【答案】分析:先由已知條件知道雙曲線的兩個(gè)焦點(diǎn)為兩個(gè)圓的圓心,再把|PQ|-|PR|的最大值轉(zhuǎn)化為求|PQ|max-|PR|min,即可求得結(jié)論.
解答:解:曲線C1的兩個(gè)焦點(diǎn)分別是F1(-5,0)與F2(5,0),|PF1|+|PF2|=8
則這兩點(diǎn)正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,
兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,
∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,
∴|PQ|-|PR|的最大值=(|PF1|+1)-(|PF2|-1)=8+2=10,
故答案為:10
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與雙曲線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三下學(xué)期回頭考文科數(shù)學(xué)試卷(解析版) 題型:填空題

若點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2:(x-2)2y2=1上,點(diǎn)O為坐標(biāo)原點(diǎn),則的最大值是       

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三第二學(xué)期第一次統(tǒng)考理科數(shù)學(xué) 題型:填空題

若點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2(x5)2y21上,點(diǎn)R在曲線C3(x5)2y21上,則 | PQ || PR | 的最大值是       

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆浙江省高三調(diào)研測(cè)試?yán)砜茢?shù)學(xué)試卷 題型:填空題

若點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2:(x-5)2y2=1上,點(diǎn)R在曲線C3:(x+5)2y2=1上,則 | PQ |-| PR | 的最大值是       

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2:(x-5)2y2=1上,點(diǎn)R在曲線C3:(x+5)2y2=1上,則 | PQ |-| PR | 的最大值是       

查看答案和解析>>

同步練習(xí)冊(cè)答案