﹣﹣﹣﹣﹣﹣﹣大前提,
,﹣﹣﹣﹣﹣﹣小前提,
所以,﹣﹣﹣﹣﹣﹣﹣結  論,
以上推理過程中的錯誤為(   )
(1)大前提      (2)小前提       (3)結論        (4)無錯誤.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設首項不為零的等差數(shù)列{an}前n項之和是Sn,若不等式an2+
Sn2
n2
≥λa12
對任意{an}和正整數(shù)n恒成立,則實數(shù)λ的最大值為( 。
A、0
B、
1
5
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn為數(shù)列{an}的前n項之和.若不等式
a
2
n
+
S
2
n
n2
≥λ
a
2
1
對任何等差數(shù)列{an}及任何正整數(shù)n恒成立,則λ的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科)已知數(shù)列{an}的前n項的和為Sn,點P(n,Sn)(n∈N)在函數(shù)f(x)=-x2+7x的圖象上.
(1)求數(shù)列{an}的通項公式及Sn的最大值;
(2)令bn=
2an
(n∈N*)
,求數(shù)列{nbn}的前n項的和;
(3)設cn=
1
(7-an)(9-an)
,數(shù)列{cn}的前n項的和為Rn,求使不等式Rn
k
57
對一切n∈N*都成立的最大正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,存在常數(shù)A,B,C,使得an+Sn=An2+Bn+C對任意正整數(shù)n都成立.
(1)求證:數(shù)列{an}為等差數(shù)列的充要條件是3A-B+C=0;
(2)若C=0,{an}是首項為1的等差數(shù)列,設P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超過P的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•資陽三模)設數(shù)列{an}的前n項和為Sn,且Sn=2an-2n+1數(shù)列{bn}滿足bn=log2
an
n+1
,其中n∈N*
(I)求數(shù)列{an}通項公式;
(II)求使不等式(1+
1
b1
)•(1+
1
b3
)…(1+
1
b2n-1
)≥m•
b2n+1
對任意正整數(shù)n都成立的最大實數(shù)m的值;
(III)當n∈N*時,求證
C
0
n
b1
+
C
1
n
b3
+L+
C
n-1
n
b2n-1
+
C
n
n
b2n+1
an
b2n+1

查看答案和解析>>

同步練習冊答案