已知點P是拋物線y2=-8x上一點,設(shè)P到此拋物線準(zhǔn)線的距離是d1,到直線x+y-10=0的距離是d2,則d1+d2的最小值是
 
考點:拋物線的簡單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)拋物線的方程,得到焦點為F(-2,0),準(zhǔn)線方程是x=2.然后作PQ與垂直準(zhǔn)線,交于點Q,過作PM與直線x+y-10=0垂直,交于點M,可得PQ=d1,PM=d2.連接PF,根據(jù)拋物線的定義可得d1+d2=PF+PM,因此當(dāng)P、F、M三點共線且與直線x+y-10=0垂直時,dl+d2最小,最后用點到直線的距離公式,可求出這個最小值.
解答: 解:∵拋物線方程是y2=-8x,
∴拋物線的焦點為F(-2,0),準(zhǔn)線方程是x=2
P是拋物線y2=-8x上一點,過P點作PQ與準(zhǔn)線垂直,垂足為Q,
再過P作PM與直線x+y-10=0垂直,垂足為M
則PQ=d1,PM=d2
連接PF,根據(jù)拋物線的定義可得PF=PQ=d1,所以d1+d2=PF+PM,
可得當(dāng)P、F、M三點共線且與直線x+y-10=0垂直時,dl+d2最小.(即圖中的F、P0、M0位置)
∴dl+d2的最小值是焦點F到直線x+y-10=0的距離,
即(dl+d2min=
|-2+0-10|
1+1
=6
2

故答案為:6
2
點評:本題借助于求拋物線上一動點到兩條定直線的距離之和的最小值問題,考查了拋物線的定義與簡單幾何性質(zhì)和點到直線距離公式等知識點,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知當(dāng)a∈R且a≠1時,函數(shù)f(x)=(a-1)x2-ax-m的圖象和x軸總有公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+an+1=
1
2
(n∈N*),a2=2,Sn是數(shù)列{an}的前n項和,則S21=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)f(x)=sinx,g(x)=|sinx|都是周期函數(shù);
②函數(shù)y=sin|x|在區(qū)間(-
π
2
,0)上遞增;
③函數(shù)y=cos(
2x
3
+
2
)是奇函數(shù);
④函數(shù)y=cosx,x∈[0,2π]的圖象與直線y=1圍成的圖形面積等于2π;
⑤函數(shù)f(x)是偶函數(shù),且圖象關(guān)于直線x=1對稱,則2為f(x)的一個周期.
其中正確的命題是
 
.(把正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3張不同的電影票全部分給10個人,每人至多一張,則有不同分法的種數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面凸四邊形ABCD的邊長均大于2,且∠DAB=45°,點P在四邊形ABCD內(nèi)運動,且在AB、AD上的射影分別為M、N,若PA=2,則△PMN面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x)=
sinπx,   x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
,有下列4個命題:
①任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②f(x)=2kf(x+2k)(k∈N*),對于一切x∈[0,+∞)恒成立;
③函數(shù)y=f(x)-ln(x-1)有3個零點;
④對任意x>0,不等式f(x)≤
k
x
恒成立,則實數(shù)k的取值范圍是[
9
8
,+∞).
則其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=
2n+1,n為奇數(shù)
2nn為偶數(shù)
,則a4+a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosx,則f′(
π
3
)等于( 。
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

同步練習(xí)冊答案