(本題滿分14分,其中第1小題4分,第2小題6分,第3小題4分)
已知函數(shù).
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)若函數(shù)的定義域關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,試討論它的奇偶性和單調(diào)性;
(Ⅲ)在(Ⅱ)的條件下,記為的反函數(shù),若關(guān)于x的方程有解,求k的取值范圍。
解:(Ⅰ),所以當(dāng)時(shí),定義域?yàn)?img width=156 height=20 src="http://thumb.zyjl.cn/pic1/0688/139/286139.gif" >;
當(dāng)時(shí),定義域?yàn)?img width=156 height=20 src="http://thumb.zyjl.cn/pic1/0688/141/286141.gif" >。
(Ⅱ)函數(shù)的定義域關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,當(dāng)且僅當(dāng),
此時(shí),。
對(duì)于定義域D=內(nèi)任意x,-x∈D,
,所以為奇函數(shù);
當(dāng),對(duì)任意,有,
而,所以,
∴在內(nèi)單調(diào)遞減;
由于為奇函數(shù),所以在內(nèi)單調(diào)遞減;
(Ⅲ)()。
方程即,令,且,得,
又,所以當(dāng)時(shí)方程有解。▋
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三4月教學(xué)質(zhì)量檢測(cè)(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分。已知數(shù)列是各項(xiàng)均不為的等差數(shù)列,公差為,為其前項(xiàng)和,且滿足
,.?dāng)?shù)列滿足,為數(shù)列的前n項(xiàng)和.
(1)求、和;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省臺(tái)州市高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué) 題型:解答題
(本題滿分14分)已知:A、B、C是的內(nèi)角,分別是其對(duì)邊長(zhǎng),向量,,且.
(1)求角A的大小;(2)若求的長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市閔行區(qū)高三上學(xué)期期末質(zhì)量抽測(cè)理科數(shù)學(xué)試卷 題型:解答題
(本題滿分14分)本題共有2個(gè)小題,第(1)小題滿分6分,第(2)小題滿分8分.
某地政府為改善居民的住房條件,集中建設(shè)一批經(jīng)適樓房.用了1400萬(wàn)元購(gòu)買了一塊空地,規(guī)劃建設(shè)8幢樓,要求每幢樓的面積和層數(shù)等都一致,已知該經(jīng)適房每幢樓每層建筑面積均為250平方米,第一層建筑費(fèi)用是每平方米3000元,從第二層開(kāi)始,每一層的建筑費(fèi)用比其下面一層每平方米增加80元.
(1)若該經(jīng)適樓房每幢樓共層,總開(kāi)發(fā)費(fèi)用為萬(wàn)元,求函數(shù)的表達(dá)式(總開(kāi)發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用);
(2)要使該批經(jīng)適房的每平方米的平均開(kāi)發(fā)費(fèi)用最低,每幢樓應(yīng)建多少層?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市閔行區(qū)高三上學(xué)期期末質(zhì)量抽測(cè)理科數(shù)學(xué)試卷 題型:解答題
(本題滿分14分)本題共有2個(gè)小題,第(1)小題滿分5分,第(2)小題滿分9分.
設(shè)雙曲線,是它實(shí)軸的兩個(gè)端點(diǎn),是其虛軸的一個(gè)端點(diǎn).已知其一條漸近線的一個(gè)方向向量是,的面積是,為坐標(biāo)原點(diǎn),直線與雙曲線C相交于、兩點(diǎn),且.
(1)求雙曲線的方程;
(2)求點(diǎn)的軌跡方程,并指明是何種曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海華師大一附中高三第二學(xué)期開(kāi)學(xué)檢測(cè)試題數(shù)學(xué) 題型:解答題
.(本題滿分14分) 本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
如圖所示的自動(dòng)通風(fēng)設(shè)施.該設(shè)施的下部是等腰梯形,其中米,梯形的高為米,米,上部是個(gè)半圓,固定點(diǎn)為的中點(diǎn).△是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),是可以沿設(shè)施邊框上下滑動(dòng)且始終保持和平行的伸縮橫桿.
(1)設(shè)與之間的距離為米,試將三角通風(fēng)窗的通風(fēng)面積(平方米)表示成關(guān)于的函數(shù);
(2)當(dāng)與之間的距離為多少米時(shí),三角通風(fēng)窗的通風(fēng)面積最大?并求出這個(gè)最大面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com