設AB是橢圓
x22
+y2=1
的不垂直于對稱軸的弦,M為AB的中點,O為坐標原點,則kAB•kOM=
 
分析:設M(a,b),A(x1,y1),B(x2,y2),易知kOM=
b
a
,再由點差法可知kAB=-
a
2b
,由此可求出kAB•kOM=-
1
2
解答:解:設M(a,b),A(x1,y1),B(x2,y2),∵M為AB的中點,∴x1+x2=2a,y1+y2=2b,
把A、B代入橢圓
x2
2
+y2=1
x12+2y12=2
x22+2y22=2

①-②得(x1+x2)(x1-x2)+2(y1+y2)(y1-y2)=0,
∴2a(x1-x2)+4b(y1-y1)=0,∴kAB=-
a
2b

kOM=
b
a
,∴kAB•kOM=-
1
2

答案:-
1
2
點評:本題考查橢圓的性質(zhì)和應用,解題時要注意點差法的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知M(m,m2)、N(n,n2)是拋物線C:y=x2上兩個不同點,且m2+n2=1,m+n≠0,直線l是線段MN的垂直平分線.設橢圓E的方程為
x2
2
+
y2
a
=1(a>0,a≠2)

(Ⅰ)當M、N在拋物線C上移動時,求直線L斜率k的取值范圍;
(Ⅱ)已知直線L與拋物線C交于A、B、兩個不同點,L與橢圓E交于P、Q兩個不同點,設AB中點為R,OP中點為S,若
OR
OS
=0
,求橢圓E離心率的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線y=x+1與橢圓
x2
2
+y2=1相交于A,B兩點,則線段AB中點的坐標是
(-
2
3
,
1
3
)
(-
2
3
,
1
3
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•溫州二模)如圖,F(xiàn)1,F(xiàn)2是橢圓
x22
+y2=1的左、右焦點,M,N是以F1F2為直徑的圓上關(guān)于X軸對稱的兩個動點.
(I)設直線MF1、NF2的斜率分別為k1,k2,求k1•k2值;
(II)直線MF1和NF2與橢圓的交點分別為A,B和C、D.問是若存在實數(shù)λ,使得λ(|AB|+|CD|)=|AB|•|CD|恒成立.若存在,求實數(shù)λ的值.若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知以動點P為圓心的圓與直線y=-
1
20
相切,且與圓x2+(y-
1
4
2=
1
25
外切.
(Ⅰ)求動P的軌跡C的方程;
(Ⅱ)若M(m,m1),N(n,n1)是C上不同兩點,且 m2+n2=1,m+n≠0,直線L是線段MN的垂直平分線.
    (1)求直線L斜率k的取值范圍;
    (2)設橢圓E的方程為
x2
2
+
y2
a
=1(0<a<2).已知直線L與拋物線C交于A、B兩個不同點,L與橢圓E交于P、Q兩個不同點,設AB中點為R,PQ中點為S,若
OR
OS
=0,求E離心率的范圍.

查看答案和解析>>

同步練習冊答案