如圖,四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,側(cè)棱A1A⊥底面ABCD,E為A1A的中點(diǎn).
求證:A1C∥平面EBD.

【答案】分析:利用三角形中位線的性質(zhì),可知線線平行,從而可證線面平行.
解答:證明:連接AC,設(shè)AC∩BD=F,連接EF,
因?yàn)榈酌鍭BCD是正方形,所以F為AC的中點(diǎn).
又E為A1A的中點(diǎn),所以EF是△A1AC的中位線,所以EF∥A1C.
因?yàn)镋F?平面EBD,A1C?平面EBD,所以A1C∥平面EBD.
點(diǎn)評(píng):本題考查直線與平面平行的判定定理,考查空間圖形的位置關(guān)系,正確運(yùn)用直線與平面平行的判定定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱AA1=2.
(Ⅰ)求證:C1D∥平面ABB1A1
(Ⅱ)求直線BD1與平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,側(cè)棱與底面邊長均為2a,且∠A1AD=∠A1AB=60°,則側(cè)棱AA1和截面B1D1DB的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是邊長為1的正方形,側(cè)棱A1A=2,
(Ⅰ)證明:AC⊥A1B;
(Ⅱ)若棱AA1上存在一點(diǎn)P,使得
AP
PA1
,當(dāng)二面角A-B1C1-P的大小為300時(shí),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•泉州模擬)如圖,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD.
(Ⅰ)從下列①②③三個(gè)條件中選擇一個(gè)做為AC⊥BD1的充分條件,并給予證明;
①AB⊥BC,②AC⊥BD;③ABCD是平行四邊形.
(Ⅱ)設(shè)四棱柱ABCD-A1B1C1D1的所有棱長都為1,且∠BAD為銳角,求平面BDD1與平面BC1D1所成銳二面角θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•天津)如圖,四棱柱ABCD-A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E為棱AA1的中點(diǎn).
(Ⅰ)證明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為
2
6
,求線段AM的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案