已知直線l:y=x+m,m∈R.
(Ⅰ)若以點M(2,0)為圓心的圓與直線l相切于點P,且點P在y軸上,求該圓的方程;
(Ⅱ)若直線l關于x軸對稱的直線為l′,問直線l′與拋物線C:x2=4y是否相切?說明理由.
分析:(I)利用待定系數(shù)法求本題中圓的方程是解決本題的關鍵,利用直線與圓相切的數(shù)學關系列出關于圓的半徑的方程,通過求解方程確定出所求圓的半徑,進而寫出所求圓的方程;
(II)設出直線為l'的方程利用直線與拋物線的位置關系解決該題,將幾何問題轉化為代數(shù)方程組問題,注意體現(xiàn)方程有幾個解的思想.
解答:解:(I)設所求圓的半徑為r,則圓的方程可設為(x-2)2+y2=r2.由題意,所求圓與直線l:y=x+m相切于點P(0,m),則有
4+m2=r2
|2-0+m|
2
=r
,解得
m=2
r=2
2
,所以圓的方程為(x-2)2+y2=8.
(II)由于直線l的方程為y=x+m,所以直線l'的方程為y=-x-m,由
y=-x-m
x2=4y
消去y得到x2+4x+4m=0,△=42-4×4m=16(1-m).
①當m=1時,即△=0時,直線l'與拋物線C:x2=4y相切;
②當m≠1時,即△≠0時,直線l'與拋物線C:x2=4y不相切.
綜上,當m=1時,直線l'與拋物線C:x2=4y相切;當m≠1時,直線l'與拋物線C:x2=4y不相切.
點評:本題考查直線與圓的位置關系,直線與拋物線的位置關系,考查學生對直線與圓相切,直線與拋物線相切的問題的轉化方法,考查學生的方程思想和運算化簡能力,屬于基本題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l:y=x+k經過橢圓C:
x2
a2
+
y2
a2-1
=1,(a>1)
的右焦點F2,且與橢圓C交于A、B兩點,若以弦AB為直徑的圓經過橢圓的左焦點F1,試求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=x+1和圓C:x2+y2=
12
,則直線l與圓C的位置關系為
相切
相切

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩點,且線段AB的中點為(
2
3
, 
1
3
)

(1)求此橢圓的離心率.
(2)若橢圓右焦點關于直線l:y=-x+1的對稱點在圓x2+y2=5上,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•菏澤一模)已知直線l:y=x+
6
,圓O:x2+y2=5,橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)的離心率e=
3
3
.直線l截圓O所得的弦長與橢圓的短軸長相等.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過圓O上任意一點P作橢圓E的兩條切線.若切線都存在斜率,求證這兩條切線互相垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=x+2,與拋物線x2=y交于A(xA,yA),B(xB,yB)兩點,l與x軸交于點C(xC,0).
(1)求證:
1
xA
+
1
xB
=
1
xC

(2)求直線l與拋物線所圍平面圖形的面積;
(3)某同學利用TI-Nspire圖形計算器作圖驗證結果時(如圖1所示),嘗試拖動改變直線l與拋物線的方程,發(fā)現(xiàn)
1
xA
+
1
xB
1
xC
的結果依然相等(如圖2、圖3所示),你能由此發(fā)現(xiàn)出關于拋物線的一般結論,并進行證明嗎?精英家教網

查看答案和解析>>

同步練習冊答案