已知復(fù)數(shù)z滿足
(6+z)-(8+z)i
z
=4+3i(其中i為虛數(shù)單位),則|z|=( 。
A、2B、1C、5D、10
考點(diǎn):復(fù)數(shù)求模
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)題意,化簡(jiǎn)
(6+z)-(8+z)i
z
=4+3i,求出z的表達(dá)式,再求模長(zhǎng).
解答: 解:∵
(6+z)-(8+z)i
z
=4+3i,
∴(6+z)-(8+z)i=(4+3i)z,
∴(3+4i)z=6-8i,
解得z=
6-8i
3+4i
;
∴|z|=
|6-8i|
|3+4i|
=
10
5
=2.
故選:A.
點(diǎn)評(píng):本題考查了求復(fù)數(shù)模長(zhǎng)的應(yīng)用問(wèn)題,解題時(shí)應(yīng)根據(jù)等式進(jìn)行化簡(jiǎn),求出復(fù)數(shù)的表達(dá)式,再求模長(zhǎng),是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足約束條件
x+y-7≤0
x-3y+1≤0
3x-y-5≥0
,則目標(biāo)函數(shù)z=y-4x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,且滿足i2=-1,a∈R,復(fù)數(shù)z=(a-2i)(1+i)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為M,則“a=1”是“點(diǎn)M在第四象限”的
 
條件(選填“充分而不必要”“必要而不充分”“充要”“既不充分又不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角形ABC的頂點(diǎn)A(-1,2),B(2,5),C(1,7)
(1)與BC平行的中位線所在直線方程;
(2)BC邊上的高所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的橢圓與雙曲線有公共焦點(diǎn),且左、右焦點(diǎn)分別為F1、F2,這兩條曲線在第一象限的交點(diǎn)為P,△PF1F2 是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2,則e1•e2 的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)(x∈D),若x∈D時(shí),均有f′(x)>f(x)成立,則稱(chēng)函數(shù)f(x)是J函數(shù).
(Ⅰ)當(dāng)函數(shù)f(x)=mexlnx是J函數(shù)時(shí),求m的取值范圍;
(Ⅱ)若函數(shù)g(x)為(0,+∞)上的J函數(shù),試比較g(a)與ea-1g(1)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知log37=a,log23=b,試以a、b的式子表示log4256=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某科研所共有職工20人,其年齡統(tǒng)計(jì)表如下:由于電腦故障,有兩個(gè)數(shù)字在表格中不能顯示出來(lái),則下列說(shuō)法正確的是( 。
年齡3839404142
人數(shù)532
A、年齡數(shù)據(jù)的中位數(shù)是40,眾數(shù)是38
B、年齡數(shù)據(jù)的中位數(shù)和眾數(shù)一定相等
C、年齡數(shù)據(jù)的平均數(shù)
.
x
∈(39,40)
D、年齡數(shù)據(jù)的平均數(shù)一定大于中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“存在x∈R,使2x+x2≤1”的否定是( 。
A、對(duì)任意x∈R,有2x+x2>1
B、對(duì)任意x∈R,有2x+x2≤1
C、存在x∈R,使2x+x2>1
D、不存在x∈R,使2x+x2≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案