精英家教網 > 高中數學 > 題目詳情
f(x)=2x3ax2bx+1的導數為f′(x),若函數yf′(x)
的圖象關于直線x=-對稱,且f′(1)=0.
①求實數ab的值;②求函數f(x)的極值.
a=3,b=-12②-6
①∵f(x)=2x3ax2bx+1,
f′(x)=6x2+2axb.
由題意知,-=-且6×12+2a×1+b=0,
a=3,b=-12.
②由①知,f(x)=2x3+3x2-12x+1.
f′(x)=6x2+6x-12=6(x+2)(x-1)
f′(x)=0,得x=1或x=-2.
f′(x)>0,得x>1或x<-2,由f′(x)<0,得-2<x<1.
f(x)在(-∞,-2)上遞增,(-2,1)上遞減,(1,+∞)上遞增.
∴當x=-2時,f(x)取得極大值f(-2)=21,當x=1時,f(x)取得極小值f(1)=-6
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=-x3+ax2+bx+c在(-∞,0)上是減函數,在(0,1)上是增函數,函數f(x)在R上有三個零點,且1是其中一個零點.
(1)求b的值      (2)求f(2)的取值范圍

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是定義在上的兩個可導函數,若,滿足,則滿足
A.B.為常數函數
C.D.為常數函數

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

,函數
(1)若,求函數在區(qū)間上的最大值;
(2)若,寫出函數的單調區(qū)間(不必證明);
(3)若存在,使得關于的方程有三個不相等的實數解,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數則方程恰有兩個不同的實根時,實數a的取值范圍是(注:e為自然對數的底數)(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

f(x)=x2-2x-4ln x,則f′(x)>0的解集為( ).
A.(0,+∞)B.(-1,0)∪(2,+∞)
C.(2,+∞)D.(-1,0)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列結論:①(cos x)′=sin x;②′=cos;③若y,則y′|x=3
=-;④(e3)′=e3.其中正確的個數為 (  ).
A.0個B.1個
C.2個D.3個

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=(ax2-2xa)·ex.
(1)當a=1時,求函數f(x)的單調區(qū)間;
(2)設g(x)=-a-2,h(x)=x2-2x-ln x,若x>1時總有g(x)<h(x),求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)=mxm-n的導數為f′(x)=8x3,則mn=    

查看答案和解析>>

同步練習冊答案