(本小題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值.列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

16
10
8.34
8.1
8.01
8
8.01
8.04
8.08
8.6
10
11.6
15.14

請觀察表中y值隨x值變化的特點,完成以下的問題.
(1)函數(shù)在區(qū)間(0,2)上遞減;函數(shù)在區(qū)間                     上遞增.當(dāng)             時,                 .
(2)證明:函數(shù)在區(qū)間(0,2)遞減.
(3)思考:函數(shù)時,有最值嗎?是最大值還是最小值?此時x為何值?(直接回答結(jié)果,不需證明)
(1);當(dāng) 
(2)證明:設(shè)是區(qū)間,(0,2)上的任意兩個數(shù),且

 


函數(shù)在(0,2)上為減函數(shù).
(3)思考:

試題分析:(1);當(dāng)   4分
(2)證明:設(shè)是區(qū)間,(0,2)上的任意兩個數(shù),且

 


函數(shù)在(0,2)上為減函數(shù).                  10分
(3)思考:      12分
點評:典型題,“對號函數(shù)”是高考常?疾榈囊活惡瘮(shù),其單調(diào)性及取得最值的情況又具有一般性,因此,學(xué)習(xí)中應(yīng)倍加關(guān)注。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)畫出函數(shù)的圖象,寫出函數(shù)的單調(diào)區(qū)間;
(2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義函數(shù),其中,且對于中的任意一個都與集合中的對應(yīng),中的任意一個都與集合中的對應(yīng),則的值為(    )
A.B.C.中較小的數(shù)D.中較大的數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)定義域為,若對于任意的,都有,且時,有.
(1)求證: 為奇函數(shù);
(2)求證: 上為單調(diào)遞增函數(shù);
(3)設(shè),若<,對所有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知函數(shù)
(1)若,求的單調(diào)區(qū)間;
(2)當(dāng)時,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是(-上的減函數(shù),那么的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>0時,證明不等式:<ln(x+1)<x;
(3)設(shè)f(x)的最小值為g(a),證明不等式:-1<ag(a)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個函數(shù):(1)     (2)     (3)
(4),其中同時滿足:① ②對定義域內(nèi)的任意兩個自變量,都有的函數(shù)個數(shù)為
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,在其定義域內(nèi)既是減函數(shù)又是奇函數(shù)為(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案