【題目】已知在 的展開式中,第6項為常數(shù)項.
(Ⅰ)求含x2的項的系數(shù);
(Ⅱ)求展開式中所有的有理項.

【答案】解:(Ⅰ)由通項公式得 ,

因為第6項為常數(shù)項,所以r=5時,有 ,解得n=10,

,得 ,故所求含x2的項的系數(shù)為

(Ⅱ)根據(jù)通項公式,由題意得 ,令 ,則10﹣2r=3k,即

因為r∈Z,所以k應為偶數(shù),所以k可以取2,0,﹣2,即r可以取2,5,8,

所以第3項,第6項,第9項為有理數(shù),

它們分別為 , ,


【解析】(Ⅰ)求出二項式的通項公式根據(jù)題意求出常數(shù)項進而得到n的值,根據(jù)通項公式令x的次數(shù)等于2得到r = 2 即可求出含x2的項的系數(shù)。(2)利用通項公式由題意找出x的次數(shù)令其為有理數(shù),對其賦值可求出有理項。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓A:(x+1)2+y2=8,動圓M經(jīng)過點B(1,0),且與圓A相切,O為坐標原點.
(Ⅰ)求動圓圓心M的軌跡C的方程;
(Ⅱ)直線l與曲線C相切于點M,且l與x軸、y軸分別交于P、Q兩點,若 ,且λ∈[ ,2],求△OPQ面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資根據(jù)長期收益率市場預測,投資類產(chǎn)品的收益與投資額成正比投資類產(chǎn)品的收益與投資額的算術平方根成正比已知投資1萬元時兩類產(chǎn)品的收益分別為0125萬元和05萬元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關系;

2該家庭有20萬元資金,全部用于理財投資問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)試比較的大小關系,并給出證明;

(2)解方程: ;

(3)求函數(shù) 是實數(shù))的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有實根?如果有實根請求出一個長度為的區(qū)間,使;如果沒有,請說明理由(注:區(qū)間的長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】衡州市臨棗中學高二某小組隨機調查芙蓉社區(qū)160個人,以研究這一社區(qū)居民在20:00﹣22:00時間段的休閑方式與性別的關系,得到下面的數(shù)據(jù)表:

休閑方式
性別

看電視

看書

合計

20

100

120

20

20

40

合計

40

120

160

下面臨界值表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調查3名在該社區(qū)的男性,設調查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量X,求X的分別列和期望;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認為“在20:00﹣22:00時間段的休閑方式與性別有關系”?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A(﹣1,1,2)、B(1,0,﹣1),設D在直線AB上,且 =2 ,設C(λ, +λ,1+λ),若CD⊥AB,則λ的值為( )
A.
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,點的中點.

(1)求證: 平面

(2)若平面, , 求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的四邊形ABCD,已知 =(6,1), =(x,y), =(﹣2,﹣3)

(1)若 且﹣2≤x<1,求函數(shù)y=f(x)的值域;
(2)若 ,求x,y的值及四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案