已知:f(x)=2cos2x+2
3
sinxcosx+a
(1)若x∈R,求f(x)的最小正周期和增區(qū)間;
(2)若f(x)在[-
π
6
,
π
3
]上最大值與最小值之和為3,求a的值.
考點(diǎn):二倍角的正弦,兩角和與差的正弦函數(shù),二倍角的余弦,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用二倍角公式和兩角和公式對(duì)函數(shù)解析式化簡(jiǎn),利用周期公式求得函數(shù)的最小正周期,利用正弦函數(shù)的性質(zhì)求得函數(shù)的單調(diào)增區(qū)間.
(2)根據(jù)x的范圍確定2x+
π
6
的范圍,進(jìn)而確定sin(2x+
π
6
)的范圍,則函數(shù)的最大和最小值的表達(dá)式可得,最后相加即可求得a.
解答: 解:(1)f(x)=2cos2x+2
3
sinxcosx+a=1+cos2x+
3
sin2x+a=2sin(2x+
π
6
)+a+1,
∴T=
2
=π,
由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,得kπ-
π
3
x≤
π
6
+kπ,k∈Z,
∴函數(shù)f(x)的增區(qū)間為[kπ-
π
3
,kπ+
π
6
](k∈Z);
(2)∵x∈[-
π
6
π
3
],
∴2x+
π
6
∈[-
π
6
,
6
]
∴sin(2x+
π
6
)∈[-
1
2
,1]
∴f(x)max=2+1+a,f(x)min=-1+a+1=a,
∴3+a+a=3,a=0.
點(diǎn)評(píng):本題主要考查了二倍角公式和兩角和公式的應(yīng)用,三角函數(shù)圖象與性質(zhì).考查了學(xué)生基礎(chǔ)知識(shí)的掌握和一定的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,O為AC與BD的交點(diǎn),AB⊥平面PAD,△PAD是正三角形,DC∥AB,DA=DC=2AB.
(1)若點(diǎn)E為棱PA上一點(diǎn),且OE∥平面PBC,求
AE
PE
的值;
(2)求證:平面PBC⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{bn}滿足b1=1,b1+b2+…+b10=100.
(1)求數(shù)列{bn}的通項(xiàng)公式bn;
(2)若an=lg(1+
1
bn
),Sn為數(shù)列{an}的前n項(xiàng)和,試比較Sn
1
2
lgbn+1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}是遞增數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)和,若a1、a3是方程x2-5x+4=0的兩個(gè)根,設(shè)bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A高校自主招生設(shè)置了先后三道程序:部分高校聯(lián)合考試、本校專業(yè)考試、本校面試.在每道程序中,設(shè)置三個(gè)成績(jī)等級(jí):優(yōu)、良、中.若考生在某道程序中獲得“中”,則該考生在本道程序中不通過,且不能進(jìn)入下面的程序.考生只有全部通過三道程序,自主招生考試才算通過.某中學(xué)學(xué)生甲參加A高校自主招生考試,已知該生在每道程序中通過的概率均為
3
4
,每道程序中得優(yōu)、良、中的概率分別為p1
1
2
、p2
(1)求學(xué)生甲不能通過A高校自主招生考試的概率;
(2)設(shè)X為學(xué)生甲在三道程序中獲優(yōu)的次數(shù),求X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx-αlnx-m,g(x)=
ex
ex
,其中m,α均為實(shí)數(shù).
(1)求g(x)的極值;
(2)設(shè)m=1,α<0,若對(duì)任意的x1,x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|
1
g(x2)
-
1
g(x1)
|恒成立,求a的最小值;
(3)設(shè)α=2,若對(duì)任意給定的x0∈(0,e],在區(qū)間(0,e]上總存在t1、t2(t1≠t2),使得f(t1)=f(t2)=g(x0)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,a1=2,an+1=3Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
n   當(dāng)n為奇數(shù)
an 當(dāng)n為偶數(shù)
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l過點(diǎn)(3,
5
)且傾斜角為
π
4
,在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸)中,圓C的方程為p=2
5
sinθ.
(1)求直線l的參數(shù)方程及圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線l交于A,B兩點(diǎn),若點(diǎn)P的坐標(biāo)為(3,
5
),求|PA|•|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=2+22+23+…+2n(n∈N*),則Sn=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案