【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)a=1時(shí),若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)求出,對a分類討論,解不等式即可得到函數(shù)的單調(diào)性;
(2)關(guān)于的不等式恒成立等價(jià)于在恒成立,構(gòu)建函數(shù),研究其單調(diào)性與最值即可.
解:(1)
當(dāng)時(shí),,在單調(diào)遞增;
當(dāng)時(shí),由得:;由得:,
在單調(diào)遞減,在單調(diào)遞增
綜上:當(dāng)時(shí),在單調(diào)遞增;
當(dāng)時(shí),在單調(diào)遞減,在單調(diào)遞增.
(2)由題意:當(dāng)時(shí),不等式,
即
即在恒成立,
令,則,
令,則,
在單調(diào)遞增
又,所以,有唯一零點(diǎn)()
所以,,即--------(※)
當(dāng)時(shí),即,單調(diào)遞減;時(shí),即,單調(diào)遞增,所以為在定義域內(nèi)的最小值.
令則方程(※)等價(jià)于
又易知單調(diào)遞增,所以,
所以,的最小值
所以,即
所以實(shí)數(shù)的取值范圍是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】搶“微信紅包”已經(jīng)成為中國百姓歡度春節(jié)時(shí)非常喜愛的一項(xiàng)活動.小明收集班內(nèi)20名同學(xué)今年春節(jié)期間搶到紅包金額(元)如下(四舍五入取整數(shù)):
102 52 41 121 72
162 50 22 158 46
43 136 95 192 59
99 22 68 98 79
對這20個(gè)數(shù)據(jù)進(jìn)行分組,各組的頻數(shù)如下:
(Ⅰ)寫出m,n的值,并回答這20名同學(xué)搶到的紅包金額的中位數(shù)落在哪個(gè)組別;
(Ⅱ)記C組紅包金額的平均數(shù)與方差分別為、,E組紅包金額的平均數(shù)與方差分別為、,試分別比較與、與的大;(只需寫出結(jié)論)
(Ⅲ)從A,E兩組所有數(shù)據(jù)中任取2個(gè),求這2個(gè)數(shù)據(jù)差的絕對值大于100的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分16分)
已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,Sn=n2an(n∈N*).
(1)試求出S1,S2,S3,S4,并猜想Sn的表達(dá)式;
(2)用數(shù)學(xué)納法證明你的猜想,并求出an的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4,BC=CD=2,AA=2,E、E分別是棱AD、AA的中點(diǎn).
(1)設(shè)F是棱AB的中點(diǎn),證明:直線EE//平面FCC;
(2)證明:平面D1AC⊥平面BB1C1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個(gè)直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復(fù)圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個(gè)數(shù)與面積的和分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底, )的導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),討論函數(shù)在區(qū)間上零點(diǎn)的個(gè)數(shù);
(2)設(shè)點(diǎn), 是函數(shù)圖象上兩點(diǎn),若對任意的,割線的斜率都大于,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(數(shù)學(xué)文卷·2017屆湖北省黃岡市高三上學(xué)期期末考試第16題) “中國剩余定理”又稱“孫子定理”.1852年英國來華傳教偉烈亞利將《孫子算經(jīng)》中“物不知數(shù)”問題的解法傳至歐洲.1874年,英國數(shù)學(xué)家馬西森指出此法符合1801年由高斯得出的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國剩余定理”. “中國剩余定理”講的是一個(gè)關(guān)于整除的問題,現(xiàn)有這樣一個(gè)整除問題:將2至2017這2016個(gè)數(shù)中能被3除余1且被5除余1的數(shù)按由小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列的項(xiàng)數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,點(diǎn)M為棱AE的中點(diǎn).
(1)求證:平面BMD∥平面EFC;
(2)若AB=1,BF=2,求三棱錐A-CEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,求的值;
(3)當(dāng)時(shí), 恒成立,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com