已知函數(shù)
(1)若函數(shù)在點(diǎn)處的切線方程為,求的值;
(2)若,函數(shù)在區(qū)間內(nèi)有唯一零點(diǎn),求的取值范圍;
(3)若對(duì)任意的,均有,求的取值范圍.
(1),;(2);(3).

試題分析:本題考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)求切線方程、判斷函數(shù)的單調(diào)性、求函數(shù)的最值等基礎(chǔ)知識(shí),考查函數(shù)思想、分類討論思想,考查綜合分析和解決問(wèn)題的能力.第一問(wèn),利用導(dǎo)數(shù)求切線方程,先求導(dǎo),將切點(diǎn)的橫坐標(biāo)代入到導(dǎo)數(shù)中,得到切線的斜率,再求即切點(diǎn)的縱坐標(biāo),直接利用點(diǎn)斜式寫出切線方程;第二問(wèn),先將代入得到解析式,求導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023437113447.png" style="vertical-align:middle;" />在有唯一的零點(diǎn),所以,所以解得;第三問(wèn),屬于恒成立問(wèn)題,通過(guò)分析題意,可以轉(zhuǎn)化為上的最大值與最小值之差,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023437503667.png" style="vertical-align:middle;" />,所以討論的正負(fù)來(lái)判斷的正負(fù),當(dāng)時(shí),為單調(diào)函數(shù),所以,當(dāng)時(shí),需列表判斷函數(shù)的單調(diào)性和極值來(lái)決定最值的位置,這種情況中還需要討論與1的大小.
試題解析:(1) ,所以,得.      2分
,所以,得.      3分
(2) 因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023437097352.png" style="vertical-align:middle;" />所以, .      4分
當(dāng)時(shí),,當(dāng)時(shí),
所以上單調(diào)遞減,在上單調(diào)遞增                  5分
,可知在區(qū)間內(nèi)有唯一零點(diǎn)等價(jià)于
,                             .      7分
.                                    8分
(3)若對(duì)任意的,均有,等價(jià)于
上的最大值與最小值之差                 10分
(。 當(dāng)時(shí),在上單調(diào)遞增,
,得,
所以                                   9分
(ⅱ)當(dāng)時(shí),由


所以,同理        .      10分
 當(dāng),即時(shí),,與題設(shè)矛盾;   11分
 當(dāng),即時(shí),恒成立;     12分
 當(dāng),即時(shí),恒成立;      13分
綜上所述,的取值范圍為.                         14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

時(shí)下,網(wǎng)校教學(xué)越來(lái)越受到廣大學(xué)生的喜愛(ài),它已經(jīng)成為學(xué)生們課外學(xué)習(xí)的一種趨勢(shì),假設(shè)某網(wǎng)校的套題每日的銷售量(單位:千套)與銷售價(jià)格(單位:元/套)滿足的關(guān)系式,其中,為常數(shù).已知銷售價(jià)格為4元/套時(shí),每日可售出套題21千套.
(1)求的值;
(2)假設(shè)網(wǎng)校的員工工資,辦公等所有開(kāi)銷折合為每套題2元(只考慮銷售出的套數(shù)),試確定銷售價(jià)格的值,使網(wǎng)校每日銷售套題所獲得的利潤(rùn)最大.(保留1位小數(shù)點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量,,點(diǎn)A、B為函數(shù)的相鄰兩個(gè)零點(diǎn),AB=π.
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)處取得極值,且曲線在點(diǎn)處的切線垂直于直線
(1)求的值;
(2)若函數(shù),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,函數(shù),兩點(diǎn)間的平均變化率是(  )
A.1B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),
,設(shè)函數(shù),且函數(shù)的零點(diǎn)均在區(qū)間內(nèi),則的最小值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824023035858303.png" style="vertical-align:middle;" />的奇函數(shù),且時(shí),,則函數(shù)       個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義方程的實(shí)數(shù)根叫做函數(shù)的“新駐點(diǎn)”,若函數(shù)的“新駐點(diǎn)”分別為,則的大小關(guān)系為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若曲線在原點(diǎn)處的切線方程是,則實(shí)數(shù)         .

查看答案和解析>>

同步練習(xí)冊(cè)答案