16.已知命題p:函數(shù)y=log0.5(x2+2x+a)的值域R,命題q:函數(shù)y=x2a-5在(0,+∞)上是減函數(shù).若p或q為真命題,p且q為假命題,求實(shí)數(shù)a的取值范圍.

分析 分別求出p,q為真時(shí)的a的范圍,根據(jù)p或q為真命題,p且q為假命題得到p,q一真一假,得到關(guān)于a的不等式組,解出即可.

解答 解:對(duì)于命題p:因其值域?yàn)镽,故x2+2x+a>0不恒成立,
所以△=4-4a≥0,∴a≤1,
對(duì)于命q:因其在(0,+∞)上是減函數(shù),
故5-2a>0,則a<$\frac{5}{2}$,
∵p或q為真命題,p且q為假命題,
∴p真q假或p假q真.                 
若p真q假,則$\left\{\begin{array}{l}{a≤1}\\{a≥\frac{5}{2}}\end{array}\right.$,則a∈∅,
若p假q真,則$\left\{\begin{array}{l}{a>1}\\{a<\frac{5}{2}}\end{array}\right.$,則1<a<$\frac{5}{2}$,
綜上可知,1<a<$\frac{5}{2}$,
故實(shí)數(shù)a的取值范圍為(1,$\frac{5}{2}$).

點(diǎn)評(píng) 本題考查了符合命題的判斷,考查指數(shù)函數(shù)以及對(duì)數(shù)函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\frac{\sqrt{x+4}}{x+2}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-4,+∞)B.(-2,+∞)C.[-4,-2)D.[-4,-2)∪(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{{2\sqrt{3}}}{3}$,E為BC中點(diǎn),F(xiàn)在棱PD上,AF⊥PD,點(diǎn)B到平面AEF的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$(x∈R)的最小值為( 。
A.2B.3C.2$\sqrt{2}$D.2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y∈[0,π],則cos(x+y)+cosx+2cosy的最小值為-2.25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一個(gè)幾何體的三視圖如圖所示(單位:m),則該幾何體的表面積為$55+4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解關(guān)于x的不等式ax2-(a+1)x+1>0(a為常數(shù)且a≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(2cosx,-$\sqrt{3}$sin2x),$\overrightarrow$=(cosx,1),令函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間.
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,f(A)=-1,a=$\sqrt{7}$,$\overrightarrow{AB}$•$\overrightarrow{AC}$=3,求邊b和c的值(b>c).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且${a_1},\frac{1}{2}{a_3},2{a_2}$成等差數(shù)列,則$\frac{{{a_8}+{a_9}}}{{{a_7}+{a_8}}}$=( 。
A.$\sqrt{2}-1$B.$3-2\sqrt{2}$C.$3+2\sqrt{2}$D.$\sqrt{2}+1$

查看答案和解析>>

同步練習(xí)冊(cè)答案