函數(shù)y=log0.5(x2-4x+3)的單調(diào)遞減區(qū)間是________.

(3,+∞)
分析:利用復合函數(shù)的單調(diào)性求解,先將函數(shù)轉(zhuǎn)化為兩個基本函數(shù)t=x2-4x+3,t>0,y=log0.5t,由同增異減的結(jié)論求解.
解答:令t=x2-4x+3,t>0
∴t在(3,+∞)上是增函數(shù)
又∵y=log0.5t在(3,+∞)是減函數(shù)
根據(jù)復合函數(shù)的單調(diào)性可知:
函數(shù)y=log0.5(x2-4x+3)的單調(diào)遞減區(qū)間為(3,+∞)
故答案為:(3,+∞)
點評:本題主要考查復合函數(shù)的單調(diào)性,結(jié)論是同增異減,一定要注意定義域,這類題,彈性空間大,可難可易.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log0.5(sin2x+cos2x)單調(diào)減區(qū)間為( 。
A、(kπ-
π
8
,kπ+
π
8
),k∈z
B、(kπ-
8
,kπ+
8
),k∈z
C、(kπ+
π
8
,kπ+
8
),k∈z
D、(kπ+
π
8
,kπ+),k∈z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
log0.5(4-x)
的定義域是( 。
A、(-∞,4)
B、[3,4]
C、(3,4)
D、[3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

4、函數(shù)y=log0.5(5+4x-x2)的遞增區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log0.5(2x2-3x+1)的單調(diào)遞減區(qū)間是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
log0.5(4x2-3x)
的定義域為
(-
1
4
,0)∪(
3
4
,1]
(-
1
4
,0)∪(
3
4
,1]

查看答案和解析>>

同步練習冊答案