【題目】設(shè)a,b,c均為正數(shù),且a+b+c=1.證明:
(1) ;
(2) .
【答案】
(1)證明:∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,
∴a2+b2+c2≥ab+bc+ac,①
又a+b+c=1,
∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac=1,②
由①②得:3(ab+bc+ac)≤1,
∴ab+bc+ac≤
(2)證明:∵a,b,c均為正數(shù),
∴ +b≥2a,
+c≥2b,
+a≥2c,
∴ +
+a+b+c≥2(a+b+c),
∴ +
≥a+b+c,a+b+c=1,
∴ +
≥1
【解析】(1)由a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,a+b+c=1即可證得ab+bc+ac≤ ;(2)由
+b≥2a,
+c≥2b,
+a≥2c,a+b+c=1即可證得結(jié)論.
【考點(diǎn)精析】利用不等式的證明對題目進(jìn)行判斷即可得到答案,需要熟知不等式證明的幾種常用方法:常用方法有:比較法(作差,作商法)、綜合法、分析法;其它方法有:換元法、反證法、放縮法、構(gòu)造法,函數(shù)單調(diào)性法,數(shù)學(xué)歸納法等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x),如果對任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,則稱f(x)為k階縮放函數(shù).
(1)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時,f(x)=1+ x,求f(2
)的值;
(2)已知函數(shù)f(x)為二階縮放函數(shù),且當(dāng)x∈(1,2]時,f(x)= ,求證:函數(shù)y=f(x)﹣x在(1,+∞)上無零點(diǎn);
(3)已知函數(shù)f(x)為k階縮放函數(shù),且當(dāng)x∈(1,k]時,f(x)的取值范圍是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)的原有運(yùn)算法則中,補(bǔ)充定義新運(yùn)算“”如下:
當(dāng)時,
;當(dāng)
時,
,
已知函數(shù),則滿足
的實(shí)數(shù)m的取值范圍是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種設(shè)備的單價為元,設(shè)備維修和消耗費(fèi)用第一年為
元,以后每年增加
元(
是常數(shù)).用
表示設(shè)備使用的年數(shù),記設(shè)備年平均費(fèi)用為
,即
(設(shè)備單價
設(shè)備維修和消耗費(fèi)用)
設(shè)備使用的年數(shù).
(Ⅰ)求關(guān)于
的函數(shù)關(guān)系式;
(Ⅱ)當(dāng),
時,求這種設(shè)備的最佳更新年限.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓
的一個焦點(diǎn),過原點(diǎn)的直線
與橢圓交于
兩點(diǎn),且
,
的面積為
.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若,過點(diǎn)
且不與坐標(biāo)軸垂直的直線交橢圓于
兩點(diǎn),線段
的垂直平分線與
軸交于點(diǎn)
,求點(diǎn)
橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x與相應(yīng)的生產(chǎn)能耗y的幾組對照數(shù)據(jù)
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.(其中
,
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大��;
(2)若sinB+sinC=1,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為
,若拋物線
的焦點(diǎn)與橢圓的一個焦點(diǎn)重合.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的左焦點(diǎn),且斜率為
的直線
交橢圓于
,
兩點(diǎn),求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項(xiàng)
,前
項(xiàng)和為
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前n項(xiàng)和Tn,并證明:1≤Tn<
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com