設(shè)不等式(2t-t2)≤x2-3x+2≤3-t2對于滿足0≤x≤2的一切x都成立,試求t的取值范圍.

答案:
解析:


提示:

令y=x2-3x+2(0≤x≤2),則在0≤x≤2上y取到的最小值為,最大值為2,令(2t-t2)≤且3-t2≥2.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+
a
2x
-1
(a為實數(shù)).
(Ⅰ)當(dāng)a=0時,求方程|f(x)|=
1
2
的根;
(Ⅱ)當(dāng)a=-1時,
(ⅰ)若對于任意t∈(1,4],不等式f(t2-2t)-f(2t2-k)>0恒成立,求k的范圍;
(ⅱ)設(shè)函數(shù)g(x)=2x+b,若對任意的x1∈[0,1],總存在著x2∈[0,1],使得f(x1)=g(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
4x-n
2x
是奇函數(shù),f(x)=log4(4x+1)+mx是偶函數(shù).
(1)求m+n的值;
(2)設(shè)h(x)=f(x)+
1
2
x,若g(x)>h[log4(2a+1)]對任意x≥1恒成立,求實數(shù)a的取值范圍.
(3)若對任意的t∈R,不等式g(t2-2t)+g(2t2-k)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省寧波市慈溪中學(xué)高一(上)期中數(shù)學(xué)試卷(1-4班)(解析版) 題型:解答題

已知定義域為R的函數(shù)是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案