【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)試判斷函數(shù)的單調(diào)性并加以證明;
(3)對(duì)任意的x∈R,不等式f(x)<m恒成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:由函數(shù)為奇函數(shù)可得f(0)= =0,解得a=﹣1
(2)解:由(1)可得f(x)= = =1﹣ ,
可得函數(shù)在R上單調(diào)遞增,下面證明:
任取實(shí)數(shù)x1<x2,則f(x1)﹣f(x2)
= ﹣ = <0,
∴函數(shù)f(x)= R上的增函數(shù)
(3)解:∵函數(shù)f(x)為增函數(shù),當(dāng)x趨向于正無(wú)窮大時(shí),f(x)趨向于1,
要使不等式f(x)<m恒成立,則需m≥1
【解析】(1)解f(0)=0可得a值;(2)由單調(diào)性的定義可得;(3)由(1)(2)可得函數(shù)f(x)為增函數(shù),當(dāng)x趨向于正無(wú)窮大時(shí),f(x)趨向于1,可得m≥1.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)單調(diào)性的判斷方法和函數(shù)奇偶性的性質(zhì),需要了解單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=x﹣2
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(x)<2的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a3=7,a5+a7=26
(1)求an及Sn;
(2)令bn= (n∈N*)求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= (x∈R)且x≠﹣1,g(x)=x2+2(x∈R).
(1)求f(2),g(2)的值;
(2)求f[g(2)]的值;
(3)求f[g(x)]和g[f(x)]的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面α與平面β相交于直線(xiàn)l,l1在平面α內(nèi),l2在平面β內(nèi),若直線(xiàn)l1和l2是異面直線(xiàn),則下列說(shuō)法正確的是( )
A.l與都相交l1 , l2
B.l至少與l1 , l2中的一條相交
C.l至多與l1 , l2中的一條相交
D.l與l1 , l2都不相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司每個(gè)工作日由位于市區(qū)的總公司向位于郊區(qū)的分公司開(kāi)一個(gè)來(lái)回的班車(chē)(每年按200個(gè)工作日計(jì)算),現(xiàn)有兩種使用班車(chē)的方案,方案一是購(gòu)買(mǎi)一輛大巴,需花費(fèi)90萬(wàn)元,報(bào)廢期為10年,車(chē)輛平均每年的各種費(fèi)用合計(jì)5萬(wàn)元,司機(jī)年工資6萬(wàn)元,司機(jī)每天請(qǐng)假的概率為0.1(每年請(qǐng)假時(shí)間不超過(guò)15天不扣工資,超過(guò)15天每天100元),若司機(jī)請(qǐng)假則需從公交公司雇傭司機(jī),每天支付300元工資.方案二是租用公交公司的車(chē)輛(含司機(jī)),根據(jù)調(diào)研每年12個(gè)月的車(chē)輛需求指數(shù)如直方圖所示,其中當(dāng)某月車(chē)輛需求指數(shù)在時(shí),月租金為萬(wàn)元.
(1)若購(gòu)買(mǎi)大巴,設(shè)司機(jī)每年請(qǐng)假天數(shù)為,求公司因司機(jī)請(qǐng)假而增加的花費(fèi)(元)及使用班車(chē)年平均花費(fèi)(萬(wàn)元)的數(shù)學(xué)期望.
(2)試用調(diào)研數(shù)據(jù),給出公司使用班車(chē)的建議,使得年平均花費(fèi)最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=x+ (a>0)在區(qū)間 上單調(diào)遞減,在區(qū)間 上單調(diào)遞增;函數(shù)
(1)請(qǐng)寫(xiě)出函數(shù)f(x)=x2+ (a>0)與函數(shù)g(x)=xn+ (a>0,n∈N,n≥3)在(0,+∞)的單調(diào)區(qū)間(只寫(xiě)結(jié)論,不證明);
(2)求函數(shù)h(x)的最值;
(3)討論方程h2(x)﹣3mh(x)+2m2=0(0<m≤30)實(shí)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)x1 , x2 , x3 , x4 , 滿(mǎn)足x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),則 的取值范圍是( ).
A.(0,4)
B.(0, )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(Ⅰ)求角A的大;
(Ⅱ)若△ABC的面積S=5 ,b=5,求sinBsinC的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com