數(shù)列{an}的前N項和為Sn,a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求數(shù)列{an}的通項an
(Ⅱ)求數(shù)列{nan}的前n項和T.
分析:(I)利用遞推公式an+1=2Sn把已知轉化為an+1與an之間的關系,從而確定數(shù)列an的通項;
(II)由(I)可知數(shù)列an從第二項開始的等比數(shù)列,設bn=n則數(shù)列bn為等差數(shù)列,所以對數(shù)列n•an的求和應用乘“公比”錯位相減.
解答:解:(I)∵an+1=2Sn,
∴Sn+1-Sn=2Sn,
Sn+1
Sn
=3.
又∵S1=a1=1,
∴數(shù)列{Sn}是首項為1、公比為3的等比數(shù)列,Sn=3n-1(n∈N*).
∴當n≥2時,an-2Sn-1=2•3n-2(n≥2),
∴an=
1,n=1
2•3n-2,n≥2

(II)Tn=a1+2a2+3a3+…+nan,
當n=1時,T1=1;
當n≥2時,Tn=1+4•30+6•31+…+2n•3n-2,①3Tn=3+4•31+6•32+…+2n•3n-1,②
①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1=2+2•
3(1-3n-2)
1-3
-2n•3n-1
=-1+(1-2n)•3n-1
∴Tn=
1
2
+(n-
1
2
)3n-1(n≥2).
又∵Tn=a1=1也滿足上式,∴Tn=
1
2
+(n-
1
2
)3n-1(n∈N*)
點評:本小題考查數(shù)列的基本知識,考查等比數(shù)列的概念、通項公式及數(shù)列的求和,考查分類討論及化歸的數(shù)學思想方法,以及推理和運算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等比數(shù)列{an}的公比q≠1,Sn表示數(shù)列{an}的前n項的和,Tn表示數(shù)列{an}的前n項的乘積,Tn(k)表示{an}的前n項中除去第k項后剩余的n-1項的乘積,即Tn(k)=
Tn
ak
(n,k∈N+,k≤n),則數(shù)列
SnTn
Tn(1)+Tn(2)+…+Tn(n)
的前n項的和是
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
a12
2-q-q-1
(n+nq-
q-qn+1+1-q1-n
1-q
(用a1和q表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的通項an=
1
pn-q
,實數(shù)p,q滿足p>q>0且p>1,sn為數(shù)列{an}的前n項和.
(1)求證:當n≥2時,pan<an-1;
(2)求證sn
p
(p-1)(p-q)
(1-
1
pn
)
;
(3)若an=
1
(2n-1)(2n+1-1)
,求證sn
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn是數(shù)列{an}的前n項和,an>0,Sn=
a
2
n
+an
2
,n∈N*
(1)求證:{an}是等差數(shù)列;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2an+bn,求數(shù)列{bn}的通項公式bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•商丘二模)數(shù)列{an}的前n項和為Sn,若數(shù)列{an}的各項按如下規(guī)律排列:
1
2
,
1
3
,
2
3
,
1
4
,
2
4
3
4
,
1
5
,
2
5
3
5
,
4
5
…,
1
n
,
2
n
,…,
n-1
n
,…有如下運算和結論:
①a24=
3
8
;
②數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…是等比數(shù)列;
③數(shù)列a1,a2+a3,a4+a5+a6,a7+a8+a9+a10,…的前n項和為Tn=
n2+n
4
;
④若存在正整數(shù)k,使Sk<10,Sk+1≥10,則ak=
5
7

其中正確的結論是
①③④
①③④
.(將你認為正確的結論序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若數(shù)列{an}的前n項和Sn=2n+1,則數(shù)列{an}為等比數(shù)列;
②在△ABC中,如果A=60°,a=
6
,b=4
,那么滿足條件的△ABC有兩解;
③設函數(shù)f(x)=x|x-a|+b,則函數(shù)f(x)為奇函數(shù)的充要條件是a2+b2=0;
④設直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則M中的直線所能圍成的正三角形面積都相等.
其中真命題的序號是

查看答案和解析>>

同步練習冊答案