設(shè)復(fù)數(shù)z=(a2-4sin2θ)+(1+2cosθ)i,其中i為虛數(shù)單位,a為實(shí)數(shù),θ∈(0,π).若z是方程x2-2x+5=0的一個(gè)根,且z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在第一象限,求θ與a的值.
【答案】分析:解實(shí)系數(shù)一元二次方程求得z,得到  ,解方程組求得 θ 和a的值.
解答:解:方程 x2-2x+5=0 的根為 x=1±2i,因?yàn)閦在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在第一象限,所以 z=1+2i,
所以,,解得 cosθ=,因?yàn)?θ∈(0,π),所以,θ=
所以,a2=1+4sin2θ=1+4×=4,a=±2.
綜上,θ=,a=±2.
點(diǎn)評:本題考查實(shí)系數(shù)一元二次方程的解法,復(fù)數(shù)與復(fù)平面內(nèi)對應(yīng)點(diǎn)之間的關(guān)系,根據(jù)三角函數(shù)值求角,得到,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知復(fù)數(shù)z=(2+i)(i-3)+4-2i; 求復(fù)數(shù)z的共軛復(fù)數(shù)
.
z
及|
.
z
|;
(2)設(shè)復(fù)數(shù)z1=(a2-2a)+ai是純虛數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題為
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)復(fù)平面中滿足|z-2|-|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
(2)當(dāng)a在實(shí)數(shù)集R中變化時(shí),復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
(3)已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標(biāo)系xoy中,將方程g(x,y)=0對應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設(shè)平面直角坐標(biāo)系xoy中方程F(x,y)=0表橢圓示一個(gè),則總存在實(shí)常數(shù)p、q,使得方程F(px,qy)=0表示一個(gè)圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市101中學(xué)2011-2012學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:044

將一個(gè)質(zhì)地均勻的正方體(六個(gè)面上分別標(biāo)有數(shù)字0,1,2,3,4,5)和一個(gè)正四面體(四個(gè)面分別標(biāo)有數(shù)字1,2,3,4)同時(shí)拋擲一次,規(guī)定“正方體向上的面上的數(shù)字為a,正四面體的三個(gè)側(cè)面上的數(shù)字之和為b”.設(shè)復(fù)數(shù)z=a+bi.

(1)若集合A={z|z為純虛數(shù)},用列舉法表示集合A;

(2)求事件“復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)(a,b)滿足a2+(b-6)2≤9”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知復(fù)數(shù)z=(2+i)(i-3)+4-2i; 求復(fù)數(shù)z的共軛復(fù)數(shù)
.
z
及|
.
z
|;
(2)設(shè)復(fù)數(shù)z1=(a2-2a)+ai是純虛數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省三明市泰寧一中高二(下)第一次段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

(1)已知復(fù)數(shù)z=(2+i)(i-3)+4-2i; 求復(fù)數(shù)z的共軛復(fù)數(shù)及||;
(2)設(shè)復(fù)數(shù)z1=(a2-2a)+ai是純虛數(shù),求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案