如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面圓周上,點(diǎn)F在DE上,且AF⊥DE,若圓柱的側(cè)面積與△ABE的面積之比等于4π。
(Ⅰ)求證:AF⊥BD;
(Ⅱ)求二面角A―BD―E的正弦值。
(Ⅰ)證明見解析。
(Ⅱ)
(Ⅰ)因?yàn)?i>AD⊥平面ABE,所以 AD⊥BE, (1分)
又AE⊥BE,AD∩AE=A,所以BE⊥平面ADE, (2分)
因?yàn)?i>AF平面ADE,所以BE⊥AF, (3分)
又AF⊥DE,所以AF⊥平面BDE,故AF⊥BD。 (4分)
(Ⅱ)取BD的中點(diǎn)M,連結(jié)AM,FM。
因?yàn)?i>AB=AD,則AM⊥BD,因?yàn)?i>AF⊥平面BDE,則AF⊥BD。
所以BD⊥平面AFM,從而FM⊥BD,所以∠AMF為二面角A―BD―E的平面角。 (6分)
過點(diǎn)E作EO⊥AB,垂足為O。
設(shè)圓柱的底半徑為r,因?yàn)閳A柱的軸截面ABCD是正方形,
則圓柱的母線長(zhǎng)為2r,所以其側(cè)面積為,
又△ABE的面積為,
由已知,,則OE=r,
所以點(diǎn)O為圓柱底面圓的圓心。 (8分)
在Rt△AOE中,。
在Rt△DAE中,,。 (10分)
又,在Rt△AFM中,,
故二面角A―BD―E的正弦值為。 (12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面圓周上,點(diǎn)F在DE上,且AF⊥DE,若圓柱的側(cè)面積與△ABE的面積之比等于4π.
(Ⅰ)求證:AF⊥BD;(Ⅱ)求二面角A―BD―E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年湖南省長(zhǎng)沙市瀏陽一中高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年瀏陽一中高考仿真模擬考試(理) 題型:解答題
如圖,圓柱的軸截面ABCD是正方形,點(diǎn)E在底面圓周上,點(diǎn)F在DE上,且AF⊥DE,若圓柱的側(cè)面積與△ABE的面積之比等于4π. 007
(Ⅰ)求證:AF⊥BD;
(Ⅱ)求二面角A―BD―E的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com