如果函數(shù)f(x)=ln(-2x+a)的定義域?yàn)椋?∞,1),則實(shí)數(shù)a的值為( )
A.-2
B.-1
C.1
D.2
【答案】分析:根據(jù)函數(shù)的解析式求得函數(shù)的定義域?yàn)椋?∞,),而由已知可得函數(shù)的定義域?yàn)椋?∞,1),故有 =1,
由此解得a的值.
解答:解:由函數(shù)f(x)=ln(-2x+a),可得-2x+a>0,x<,故函數(shù)的定義域?yàn)椋?∞,).
而由已知可得函數(shù)的定義域?yàn)椋?∞,1),
故有 =1,解得 a=2,
故選D.
點(diǎn)評(píng):本題主要考查求對(duì)數(shù)函數(shù)的定義域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=x+
a
x
旦(a>0)有如下的性質(zhì):在區(qū)間(0,
a
]上單調(diào)遞減,在[
a
,+∞)上單調(diào)遞增.
(1)如果函數(shù)f(x)=x+
2b
x
在(0,4]上單調(diào)遞減,在[4,+∞)上單調(diào)遞增,求常數(shù)b的值.
(2)設(shè)常數(shù)a∈[l,4],求函數(shù)y=x+
a
x
在x∈[l,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=-
2a
b
ln(x+1)
的圖象在x=1處的切線(xiàn)l過(guò)點(diǎn)(0,-
1
b
),并且l與圓C:x2+y2=1相離,則點(diǎn)(a,b)與圓C的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)y=x+數(shù)學(xué)公式旦(a>0)有如下的性質(zhì):在區(qū)間(0,數(shù)學(xué)公式]上單調(diào)遞減,在[數(shù)學(xué)公式,+∞)上單調(diào)遞增.
(1)如果函數(shù)f(x)=x+數(shù)學(xué)公式在(0,4]上單調(diào)遞減,在[4,+∞)上單調(diào)遞增,求常數(shù)b的值.
(2)設(shè)常數(shù)a∈[l,4],求函數(shù)y=x+數(shù)學(xué)公式在x∈[l,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)y=x+
a
x
旦(a>0)有如下的性質(zhì):在區(qū)間(0,
a
]上單調(diào)遞減,在[
a
,+∞)上單調(diào)遞增.
(1)如果函數(shù)f(x)=x+
2b
x
在(0,4]上單調(diào)遞減,在[4,+∞)上單調(diào)遞增,求常數(shù)b的值.
(2)設(shè)常數(shù)a∈[l,4],求函數(shù)y=x+
a
x
在x∈[l,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省襄陽(yáng)市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)y=x+旦(a>0)有如下的性質(zhì):在區(qū)間(0,]上單調(diào)遞減,在[,+∞)上單調(diào)遞增.
(1)如果函數(shù)f(x)=x+在(0,4]上單調(diào)遞減,在[4,+∞)上單調(diào)遞增,求常數(shù)b的值.
(2)設(shè)常數(shù)a∈[l,4],求函數(shù)y=x+在x∈[l,2]的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案