已知函數(shù)f(x)=x3+mx2-m2x+1(m為常數(shù),且m>0)有極大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率為-5的直線是曲線y=f(x)的切線,求此直線方程.
【答案】
分析:(I)求出導(dǎo)函數(shù),求出導(dǎo)函數(shù)等于0的兩個根,列出x,f′(x),f(x)的變化情況的表格,求出極大值,列出方程求出m的值.
(II)將(I)求出的m的值代入導(dǎo)函數(shù),利用曲線在切點處的導(dǎo)數(shù)值是切線的斜率,令導(dǎo)數(shù)等于-5,求出x即切點橫坐標,將橫坐標代入f(x)求出切點坐標,利用直線方程的點斜式寫出切線方程.
解答:解:(Ⅰ)f’(x)=3x
2+2mx-m
2=(x+m)(3x-m)=0,則x=-m或x=
m,
當(dāng)x變化時,f’(x)與f(x)的變化情況如下表:
x | (-∞,-m) | -m | (-m,) | | () |
f'(x) | + | 0 | - | 0 | + |
f(x) | 遞增 | 極大值 | 遞減 | 極小值 | 遞增 |
從而可知,當(dāng)x=-m時,函數(shù)f(x)取得極大值9,
即f(-m)=-m
3+m
3+m
3+1=9,∴m=2.
(Ⅱ)由(Ⅰ)知,f(x)=x
3+2x
2-4x+1,
依題意知f’(x)=3x
2+4x-4=-5,∴x=-1或x=-
.
又f(-1)=6,f(-
)=
,
所以切線方程為y-6=-5(x+1),或y-
=-5(x+
),
即5x+y-1=0,或135x+27y-23=0.
點評:本題考查利用導(dǎo)數(shù)求函數(shù)的極值的步驟:求出導(dǎo)數(shù);令導(dǎo)數(shù)為0求出根;列出表格判斷根左右兩邊導(dǎo)函數(shù)的符號;求出極值.考查導(dǎo)數(shù)的幾何意義:導(dǎo)數(shù)在切點處的值是曲線的切線斜率.