設(shè)數(shù)列的各項(xiàng)均為正實(shí)數(shù),,若數(shù)列滿足,其中為正常數(shù),且.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使得當(dāng)時(shí),恒成立?若存在,求出使結(jié)論成立的的取值范圍和相應(yīng)的的最小值;若不存在,請(qǐng)說(shuō)明理由;
(3)若,設(shè)數(shù)列對(duì)任意的,都有成立,問(wèn)數(shù)列是不是等比數(shù)列?若是,請(qǐng)求出其通項(xiàng)公式;若不是,請(qǐng)說(shuō)明理由.
(1)詳見(jiàn)解析;(2);(3)

試題分析:(1)由條件可知,數(shù)列為等差數(shù)列,又知,其通項(xiàng)公式易求,再根根據(jù)數(shù)列與數(shù)列的關(guān)系,可求出數(shù)列的通項(xiàng)公式;(2)由(1)中所求的數(shù)列的通項(xiàng)公式,可對(duì)進(jìn)行化簡(jiǎn),然后再對(duì)其考察;(3)當(dāng)時(shí),結(jié)合(1)的結(jié)果,可求出,代入中,設(shè)法對(duì)其變形處理,找到的遞推關(guān)系再進(jìn)行判斷.
試題解析:
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024207563753.png" style="vertical-align:middle;" />,所以,所以數(shù)列是以為公差的等差數(shù)列,又,所以,          2分
故由,得.                     4分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024208203563.png" style="vertical-align:middle;" />,所以,
,所以,                                  6分
(。┊(dāng)時(shí),,解得,不符合題意;   7分
(ⅱ)當(dāng)時(shí),,解得.                8分
綜上所述,當(dāng)時(shí),存在正整數(shù)使得恒成立,且的最小值為4.
9分
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024207688421.png" style="vertical-align:middle;" />,由(1)得
所以       ①,
    ②,
由②①,得                 ③, 12分
所以                   ④,
再由④③,得,即,
所以當(dāng)時(shí),數(shù)列成等比數(shù)列,                          15分
又由①式,可得,,則,所以數(shù)列一定是等比數(shù)列,且.
16分
(說(shuō)明:若第(3)小題學(xué)生由前幾項(xiàng)猜出等比數(shù)列,再代回驗(yàn)證的,扣3分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列,分別為等比,等差數(shù)列,數(shù)列的前n項(xiàng)和為,且,成等差數(shù)列,,數(shù)列中,,
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)若數(shù)列的前n項(xiàng)和為,求滿足不等式的最小正整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列為遞增等差數(shù)列,且是方程的兩根.?dāng)?shù)列為等比數(shù)列,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列各項(xiàng)為非負(fù)實(shí)數(shù),前n項(xiàng)和為,且
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)時(shí),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列分別為等差數(shù)列與等比數(shù)列,且,,則以下結(jié)論正確的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

數(shù)列的首項(xiàng)為,為等差數(shù)列且 .若則,,則(   )
A.0B.3C.8D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知、均為等差數(shù)列,其前項(xiàng)和分別為,若,則值是( )
A.B.C.D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列等于(  )
A.2B.—2 C.—3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,若,則的前項(xiàng)和(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案