求與直線y=-2x+10平行,且在兩坐標(biāo)軸上的截距之和為12的直線方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆新疆農(nóng)七師高級中學(xué)高二上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
)設(shè)點(diǎn)C為曲線y=(x>0)上任一點(diǎn),以點(diǎn)C為圓心的圓與x軸交于點(diǎn)E、A,與y軸交于點(diǎn)E、B.
(1)證明:多邊形EACB的面積是定值,并求這個(gè)定值;
(2)設(shè)直線y=-2x+4與圓C交于點(diǎn)M,N,若|EM|=|EN|,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆江西省南昌市高三第一次模擬測試卷理科數(shù)學(xué)試卷 題型:填空題
已知向量p=(-cos 2x,a),q=(a,2-sin 2x),函數(shù)f(x)=p·q-5(a∈R,a≠0)
(1)求函數(shù)f(x)(x∈R)的值域;
(2)當(dāng)a=2時(shí),若對任意的t∈R,函數(shù)y=f(x),x∈(t,t+b]的圖像與直線y=-1有且僅有兩個(gè)不同的交點(diǎn),試確定b的值(不必證明),并求函數(shù)y=f(x)的在[0,b]上單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省南昌市2011-2012學(xué)年高三下學(xué)期第一次模擬測試卷(數(shù)學(xué)理) 題型:解答題
已知向量p=(-cos 2x,a),q=(a,2-sin 2x),函數(shù)f(x)=p·q-5(a∈R,a≠0)
(1)求函數(shù)f(x)(x∈R)的值域;
(2)當(dāng)a=2時(shí),若對任意的t∈R,函數(shù)y=f(x),x∈(t,t+b]的圖像與直線y=-1有且僅有兩個(gè)不同的交點(diǎn),試確定b的值(不必證明),并求函數(shù)y=f(x)的在[0,b]上單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
求圓心在直線y=-2x上,并且經(jīng)過點(diǎn)A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r==,
故所求圓的方程為:+=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圓的方程為:+=2 ………………………12分
法二:由條件設(shè)所求圓的方程為:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圓的方程為:+=2 ………………………12分
其它方法相應(yīng)給分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com