解:(I)
,依題意f'(x)≥0,x∈(1,2],即a≤2x
2,x∈(1,2].
∵上式恒成立,∴a≤2.①
又
,依題意g'(x)≤0,x∈(0,1),即
,x∈(0,1).
∵上式恒成立,∴a≥2.②
由①②得a=2
∴
(II)由(I)可知,方程f(x)=g(x)+2,
設(shè)
,
令h'(x)>0,并由x>0,得
,解知x>1
令h'(x)<0,由x>0,解得0<x<1
列表分析:
知h(x)在x=1處有一個(gè)最小值0
當(dāng)x>0且x≠1時(shí),h(x)>0,
∴h(x)=0在(0,+∝)上只有一個(gè)解.
即當(dāng)x>0時(shí),方程f(x)=g(x)+2有唯一解
分析:(1)已知函數(shù)f(x)在(1,2]是增函數(shù),g(x)在在(0,1)為減函數(shù).則在(1,2]上f'(x)≥0恒成立,在(0,1)上g(x)≤0恒成立.
(2)由(1)不難給出方程f(x)=g(x)+2,然后構(gòu)造函數(shù),利用函數(shù)的單調(diào)性證明方程解的唯一性.
點(diǎn)評(píng):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性比用函數(shù)單調(diào)性的定義要方便,但應(yīng)注意f′(x)>0(或f′(x)<0)僅是f(x)在某個(gè)區(qū)間上為增函數(shù)(或減函數(shù))的充分條件,在(a,b)內(nèi)可導(dǎo)的函數(shù)f(x)在(a,b)上遞增(或遞減)的充要條件應(yīng)是f′(x)≥0[或f′(x)≤0],x∈(a,b)恒成立,且f′(x)在(a,b)的任意子區(qū)間內(nèi)都不恒等于0,這就是說,函數(shù)f(x)在區(qū)間上的增減性并不排斥在區(qū)間內(nèi)個(gè)別點(diǎn)處有f′(x0)=0,甚至可以在無窮多個(gè)點(diǎn)處f′(x0)=0,只要這樣的點(diǎn)不能充滿所給區(qū)間的任何一個(gè)子區(qū)間,因此,在已知函數(shù)f(x)是增函數(shù)(或減函數(shù))求參數(shù)的取值范圍時(shí),應(yīng)令f′(x)≥0[或f′(x)≤0]恒成立,解出參數(shù)的取值范圍(一般可用不等式恒成立理論求解),然后檢驗(yàn)參數(shù)的取值能否使f′(x)恒等于0,若能恒等于0,則參數(shù)的這個(gè)值應(yīng)舍去,若f′(x)不恒為0,則由f′(x)≥0[或f′(x)≤0]恒成立解出的參數(shù)的取值范圍確定.