2.有如下幾種說法:
①若p∨q為真命題,則p、q均為真命題;
②命題“?x0∈R,2x0≤0”的否定是?x∈R,2x>0;
③直線l:y=kx+l與圓O:x2+y2=1相交于A、B兩點,則“k=l”是△OAB的面積為$\frac{1}{2}$的充分而不必要條件;
④隨機變量ξ-N(0,1),已知φ(-1.96)=0.025,則 P(|ξ|<1.96 )=0.975.
其中正確的為(  )
A.①④B.②③C.②③④D.②④

分析 利用復(fù)合命題的真假判斷①的正誤;命題的否定判斷②的正誤;直線與圓的位置關(guān)系判斷③的正誤;利用二項分布判斷④的正誤.

解答 解:對于①,若p∨q為真命題,則p,q至少有一個為真命題,①錯誤.
對于②,命題“?x0∈R,2x0≤0”的否定是?x∈R,2x>0,滿足特稱命題與全稱命題的否定關(guān)系,正確.
對于③,直線l:y=kx+l恒過(0,1)點與圓O:x2+y2=1相交于A、B兩點,則“k=±l”是△OAB的面積為$\frac{1}{2}$;
“k=l”是△OAB的面積為$\frac{1}{2}$的充分而不必要條件;正確;
對于④,隨機變量ξ~N(0,1),已知Φ(-1.96)=0.025,則P(|ξ|<1.96)=P(-1.96<ξ<1.96)=1-2×0.025=0.95.④錯誤.
故選:B.

點評 標(biāo)題考查命題的真假的判斷,復(fù)合命題以及命題否定、充要條件等知識點,考查分析問題解決問題的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知AB⊥平面BEC,AB∥CD,AB=BC=4,CD=2,△BEC為等邊三角形,F(xiàn),G分別是AB,CD的中點.求證.
(Ⅰ)平面ABE⊥平面ADE;
(Ⅱ)求平面ADE與平面EFG所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在同一直角坐標(biāo)系中,方程$\frac{x^2}{9}+\frac{y^2}{4}=1$所對應(yīng)的圖形經(jīng)過伸縮變換$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$后的圖形所對應(yīng)的方程為( 。
A.$\frac{x^2}{81}+\frac{y^2}{16}=1$B.x2+y2=1C.$\frac{x^2}{27}+\frac{y^2}{8}=1$D.$\frac{x^2}{3}+\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知m,n是空間中兩條不同的直線,α,β是兩個不同的平面,則下列命題中正確的是( 。
A.若m⊥n,n⊥α,則m∥αB.若α⊥β,m∥α,則m⊥β
C.若m∥α,n∥β,m∥n,則α∥βD.若m⊥β,m∥α,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$y=-2{sin^2}x-2\sqrt{3}sinxcosx$的最小正周期和最大值分別(  )
A.$T=2π,{y_{max}}=2\sqrt{3}$B.$T=π,{y_{max}}=2\sqrt{3}$C.T=π,ymax=3D.T=π,ymax=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗,收集數(shù)據(jù)如下:
實驗順序第一次第二次第三次第四次第五次
零件數(shù)
x(個)
1020304050
加工時間y(分鐘)6266758488
(1)請根據(jù)五次試驗的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$
(2)根據(jù)(1)得到的線性回歸方程預(yù)測加工70個零件所需要的時間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}x$,其中$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\sum_{i=1}^{n}$yi

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出下列例題:
①若奇函數(shù)f(x)對定義域內(nèi)任意x都有f(x)=f(2-x),則函數(shù)f(x)為周期函數(shù);
②函數(shù)f(x)=(x-3)e-x的單調(diào)遞增區(qū)間為(2,+∞);
③若函數(shù)f(x)=f'($\frac{π}{4}$)cosx+sinx,則f($\frac{π}{4}$)的值為1;
④函數(shù)f(x)=2|x||log0.5x|-1的零點的個數(shù)為2,
其中真命題是①③④(將你認(rèn)為真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.以下四個命題中:
①已知圓C上一定點A和一動點B,O為坐標(biāo)原點,若$\overrightarrow{OP}=\frac{1}{2}({\overrightarrow{OA}+\overrightarrow{OB}}$),則動點P的軌跡為圓;
②設(shè)A、B為兩個定點,k為非零常數(shù),|$\overrightarrow{PA}}$|-|${\overrightarrow{PB}}$|=k,則動點P的軌跡為雙曲線;
③0<θ<$\frac{π}{4}$,則雙曲線C1:$\frac{x^2}{{{{cos}^2}θ}}-\frac{y^2}{{{{sin}^2}θ}}$=1與C2:$\frac{y^2}{{{{sin}^2}θ}}-\frac{x^2}{{{{sin}^2}θ{{tan}^2}θ}}$=1的離心率相同;
④已知兩定點F1(-1,0),F(xiàn)2(1,0)和一動點P,若|PF1|•|PF2|=a2(a≠0),則點P的軌跡關(guān)于原點對稱.
其中正確命題的序號為①③④        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\overrightarrow a$•$\overrightarrow b$,且$\overrightarrow a$=(cos2x+1,1),$\overrightarrow b$=(1,$\sqrt{3}$sin2x-1).
(1)求函數(shù)f(x)的最小正周期、最大值和最小值;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案