n=
e2
1
3
x
dx
,則二項式(x+
1
x
)n
的展開式的常數(shù)項是
20
20
分析:利用定積分公式求出n的值,得到二項式(x+
1
x
)n
=(x+
1
x
)
6
的展開式通項公式,令x的系數(shù)等于0求得r的值,即可得到二項式(x+
1
x
)n
的展開式的常數(shù)項.
解答:解:n= 3 
e2
1
1
x
dx
=3
lnx |
e2
1
=3lne2-3ln1=6-0=6.
則二項式(x+
1
x
)n
=(x+
1
x
)
6
,其展開式通項公式為Tr+1=C6r x6-r x-r=C6r x6-2r,
令6-2r=0,可得 r=3.
故二項式(x+
1
x
)n
的展開式的常數(shù)項是C63=20.
故答案為:20.
點評:本題主要考查定積分公式的應用,二項式定理,二項展開式的通項公式,求展開式中某項的系數(shù),屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,橢圓C2
x2
a2
y2
b2
=1
的焦點為F1,F(xiàn)2,|A1B1|=
7
,SB1A1B2A2=2SB1F1B2F2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設n為過原點的直線,l是與n垂直相交于點P,與橢圓相交于A,B兩點的直線|
OP
|=1,是否存在上述直線l使
OA
OB
=0成立?若存在,求出直線l的方程;并說出;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程.
(2)過點Q(一2,0)作直線l與曲線C交于A、B兩點,設N是過點(-
4
17
,0),且以言
a
=(0,1)
為方向向量的直線上一動點,滿足
ON
=
OA
+
OB
(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線Z的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•陜西)設函數(shù)fn(x)=xn+bx+c(n∈N+,b,c∈R)
(1)設n≥2,b=1,c=-1,證明:fn(x)在區(qū)間(
12
,1)
內存在唯一的零點;
(2)設n為偶數(shù),|f(-1)|≤1,|f(1)|≤1,求b+3c的最小值和最大值;
(3)設n=2,若對任意x1,x2∈[-1,1],有|f2(x1)-f2(x2)|≤4,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)集序列{1},{3,5},{7,9,11},{13,15,17,19},…,其中第n個集合有n個元素,每一個集合都由連續(xù)正奇數(shù)組成,并且每一個集合中的最大數(shù)與后一個集合中的最小數(shù)是連續(xù)奇數(shù).
(1)求第n個集合中各數(shù)之和Sn的表達式;
(2)設n是不小于2的正整數(shù),f(n)=
n
i=1
1
3Si
,求證:n+
n-1
i=1
f(i)=nf(n)

查看答案和解析>>

同步練習冊答案