(理)已知以a為首項(xiàng)的數(shù)列{an}滿足:
(1)若0<an≤6,求證:0<an+1≤6;
(2)若a,k∈N﹡,求使an+k=an對(duì)任意正整數(shù)n都成立的k與a;
(3)若(m∈N﹡),試求數(shù)列{an}的前4m+2項(xiàng)的和s4m+2
【答案】分析:(1)分當(dāng)an∈(0,3]時(shí)和當(dāng)an∈(3,6]時(shí),分別求出an+1的范圍,得到要證的不等式.
(2)當(dāng)a=1時(shí),利用通項(xiàng)求出a2=2,a3=4,a4=1,得到滿足題意的k=3t,t∈N*.同理可得,a取其他值時(shí)k的取值,
(3)通過(guò)解不等式判斷出項(xiàng)的取值范圍,從而判斷出項(xiàng)之間的關(guān)系,選擇合適的求和方法求出和.
解答:解:(1)當(dāng)an∈(0,3]時(shí),則an+1=2an∈(0,6],
當(dāng)an∈(3,6]時(shí),則an+1=an-3∈(0,3],
故an+1∈(0,6],
所以當(dāng)0<an≤6時(shí),總有0<an+1≤6.  …(5分)
(2)①當(dāng)a=1時(shí),a2=2,a3=4,a4=1,故滿足題意的k=3t,t∈N*.
同理可得,當(dāng)a=2或4時(shí),滿足題意的k=3t,t∈N*.
當(dāng)a=3或6時(shí),滿足題意的k=2t,t∈N*.
②當(dāng)a=5時(shí),a2=2,a3=4,a4=1,故滿足題意的k不存在.
③當(dāng)a≥7時(shí),由(1)知,滿足題意的k不存在.
綜上得:當(dāng)a=1,2,4時(shí),滿足題意的k=3t,t∈N*;
當(dāng)a=3,6時(shí),滿足題意的k=2t,t∈N*.    …(12分)
(3)由m∈N*,可得2m-1≥1,故
當(dāng)1<k≤m時(shí),
故ak=2k-1a且am+1=2ma.又,-------(15分)
所以
故S4m+2=S4(m+1)-a4m+3-a4m+4=4(a1+a2+•…+am+1)-(2m-1+2m)a
=4(1+2+…+2m)a-3×2m-1a=4(2m+1-1)a-3×2m-1a
=.    …(18分)
點(diǎn)評(píng):解決睡了的求和問(wèn)題,關(guān)鍵是求出數(shù)列的通項(xiàng),然后根據(jù)數(shù)列通項(xiàng)的特點(diǎn)選擇合適的求和方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知以a為首項(xiàng)的數(shù)列{an}滿足:an+1=
an-3,an>3
2anan≤3.

(1)若0<an≤6,求證:0<an+1≤6;
(2)若a,k∈N﹡,求使an+k=an對(duì)任意正整數(shù)n都成立的k與a;
(3)若a=
3
2m-1
(m∈N﹡),試求數(shù)列{an}的前4m+2項(xiàng)的和s4m+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年上海市浦東新區(qū)建平中學(xué)高三(下)3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(理)已知以a為首項(xiàng)的數(shù)列{an}滿足:
(1)若0<an≤6,求證:0<an+1≤6;
(2)若a,k∈N﹡,求使an+k=an對(duì)任意正整數(shù)n都成立的k與a;
(3)若(m∈N﹡),試求數(shù)列{an}的前4m+2項(xiàng)的和s4m+2

查看答案和解析>>

同步練習(xí)冊(cè)答案