【題目】某程序框圖如圖所示,其中t∈Z,該程序運(yùn)行后輸出的k=2,則t的最大值為( )
A.11
B.2057
C.2058
D.2059
【答案】C
【解析】解:模擬程序的運(yùn)行,可得 k=10,S=0
滿足條件S≤t,執(zhí)行循環(huán)體,S=1,k=8
滿足條件S≤t,執(zhí)行循環(huán)體,S=3,k=6
滿足條件S≤t,執(zhí)行循環(huán)體,S=11,k=4
滿足條件S≤t,執(zhí)行循環(huán)體,S=2059,k=2
由題意,此時(shí)不滿足條件S≤t,退出循環(huán),輸出S的值為2059.
可得:11≤t<2059,則t的最大值為2058.
故選:C.
【考點(diǎn)精析】利用程序框圖對(duì)題目進(jìn)行判斷即可得到答案,需要熟知程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(其中,,)的圖象的兩條相鄰對(duì)稱(chēng)軸之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(1)求函數(shù)的解析式;
(2)當(dāng)時(shí),求函數(shù)的值域;
(3)若方程在上有兩個(gè)不相等的實(shí)數(shù)根,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,拋物線上的點(diǎn)A到y(tǒng)軸的距離等于|AF|﹣1,
(1)求p的值;
(2)若直線AF交拋物線于另一點(diǎn)B,過(guò)B與x軸平行的直線和過(guò)F與AB垂直的直線交于點(diǎn)N,AN與x軸交于點(diǎn)M,求M的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB), =(cosx,sinx),若函數(shù)f(x)= 的圖象關(guān)于直線x= 對(duì)稱(chēng),求角A,B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究函數(shù)的最小值,并確定取得最小值時(shí)x的值.列表如下:
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 4.8 | 7.57 | … |
請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.
函數(shù)在區(qū)間(0,2)上遞減;
函數(shù)在區(qū)間 上遞增.
當(dāng) 時(shí), .
證明:函數(shù)在區(qū)間(0,2)遞減.
思考:函數(shù)時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將的圖像向左平移個(gè)單位,再向下平移1個(gè)單位,得到函數(shù)的圖像,則下列關(guān)于函數(shù)的說(shuō)法中正確的個(gè)數(shù)是( )
① 函數(shù)的最小正周期是 ② 函數(shù)的一條對(duì)稱(chēng)軸是
③函數(shù)的一個(gè)零點(diǎn)是 ④函數(shù)在區(qū)間上單調(diào)遞減
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形, , ,點(diǎn)為矩形內(nèi)一點(diǎn),且,設(shè).
(1)當(dāng)時(shí),求的值;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAB⊥底面ABCD,△PAB為正三角形.AB⊥AD,CD⊥AD,點(diǎn)E、M為線段BC、AD的中點(diǎn),F(xiàn),G分別為線段PA,AE上一點(diǎn),且AB=AD=2,PF=2FA.
(1)確定點(diǎn)G的位置,使得FG∥平面PCD;
(2)試問(wèn):直線CD上是否存在一點(diǎn)Q,使得平面PAB與平面PMQ所成銳二面角的大小為30°,若存在,求DQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題
(1)求函數(shù)y=2|x﹣1|﹣|x﹣4|的值域;
(2)若不等式2|x﹣1|﹣|x﹣a|≥﹣1在x∈R上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com