設(shè)a>b>c>0,x=,y=,z=,則x,y,z的大小順序是    .

∵a>b>c>0,∴y2-x2=b2+(c+a)2-a2-(b+c)2=2c(a-b)>0,∴y2>x2,即y>x,

z2-y2=c2+(a+b)2-b2-(c+a)2=2a(b-c)>0,

故z2>y2,即z>y,故z>y>x.

答案:z>y>x

【一題多解】特值代換法,令a=3,b=2,c=1,

則x=,y=,z=,

則x<y<z,故z>y>x.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈(0,+∞)且a+b+c=1,令x=(
1
a
-1)(
1
b
-1)(
1
c
-1)
,則x的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是正常數(shù),且a,b,c互不相等,x,y,z∈(0,+∞),
(1)求證:
a2
x
+
b2
y
+
c2
z
(a+b+c)2
x+y+z
,并指出等號成立的條件;
(2)利用(1)的結(jié)論:
①求函數(shù)f(x)=
1
x
+
4
1-2x
+
25
1+x
(x∈(0,
1
2
))
的最小值,并求出相應(yīng)的x值;
②設(shè)a、b、c∈(0,1),求證:
a
1-bc2
+
b
1-ca2
+
c
1-ab2
a+b+c
1-abc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(x+1),設(shè)a>b>c>0,則
f(a)
a
,
f(b)
b
f(c)
c
的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>b>c>0,x=,y=,z=,則x,y,z的大小順序是__________.

查看答案和解析>>

同步練習(xí)冊答案