(12分)已知各項均為正數(shù)的數(shù)列,
的等比中項。
(1)求證:數(shù)列是等差數(shù)列;
(2)若的前n項和為Tn,求Tn。
(1)見解析;(2)

試題分析:(1)要證明一個數(shù)列是等差數(shù)列,關(guān)鍵是證明從第二項起后一項與前一項的差都為同一個常數(shù)即可。
(2)在第一問的基礎(chǔ)上,進一步結(jié)合錯位相減法求數(shù)列的和。
解。(1)由題意,
當(dāng)




是等差數(shù)列
(2)
 ①
 ②
①—②得

點評:解決該試題的關(guān)鍵是根據(jù)通項公式與前n項和關(guān)系式得到其通項公式,以及錯位相減法求數(shù)列的和的運用。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在數(shù)列中,;
(1)設(shè),求證數(shù)列是等比數(shù)列;
(2)設(shè),求證:數(shù)列是等差數(shù)列;
(3)求數(shù)列的通項公式及前n項和的公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 已知曲線,從上的點軸的垂線,交于點,再從點軸的垂線,交于點,
設(shè).。
求數(shù)列的通項公式;
,數(shù)列的前項和為,試比較的大小;
,數(shù)列的前項和為,試證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列的公差為2,若成等比數(shù)列, 則=(      )
A.–4B.–6C.–8D.–10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等比數(shù)列的前項和為,且成等差數(shù)列.若,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,,則(    ).
A.45  B.75 C.180  D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

兩個等差數(shù)列­­="___________"

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知等差數(shù)列中,前5項和前10項的和分別為25和100。數(shù)列中,。
(1)求、
(2)設(shè),求。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列的前項和為,,則數(shù)列的前100項和為                   (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案