已知復(fù)數(shù)z=(2m2+3m-2)+(m2+m-2)i,(m∈R)根據(jù)下列條件,求m值.
(1)z是實數(shù);
(2)z是虛數(shù);
(3)z是純虛數(shù);
(4)z=0.
【答案】
分析:(1)當(dāng)復(fù)數(shù)的虛部等于零時,復(fù)數(shù)為實數(shù),由此求得m的值.
(2)當(dāng)復(fù)數(shù)的虛部不等于零時,復(fù)數(shù)為虛數(shù),由此求得m的值.
(3)當(dāng)復(fù)數(shù)的實部等于零,且虛部不等于零時,復(fù)數(shù)為純虛數(shù),由此求得m的值.
(4)當(dāng)復(fù)數(shù)的實部等于零,且虛部也等于零時,復(fù)數(shù)等于零,由此求得m的值.
解答:解:(1)當(dāng)m
2+m-2=0,即m=-2或m=1時,z為實數(shù);
(2)當(dāng)m
2+m-2≠0,即m≠-2且m≠1時,z為虛數(shù);
(3)當(dāng)
,解得m=
,
即 m=
時,z為純虛數(shù).
(4)令
,解得 m=-2,即m=-2時,z=0.
點評:本題主要考查復(fù)數(shù)的基本概念,兩個復(fù)數(shù)相等的充要條件,屬于基礎(chǔ)題.