已知函數(shù)f(x)=
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),x1+x2<0.
【答案】分析:(I)利用導(dǎo)數(shù)的運(yùn)算法則求出f(x),分別解出f(x)>0與f(x)<0的x取值范圍即可得到單調(diào)區(qū)間;
(II)當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),不妨設(shè)x1<x2.由(I)可知:x1∈(-∞,0),x2∈(0,1).利用導(dǎo)數(shù)先證明:?x∈(0,1),f(x)<f(-x).而x2∈(0,1),可得f(x2)<f(-x2).即f(x1)<f(-x2).由于x1,-x2∈(-∞,0),f(x)在(-∞,0)上單調(diào)遞增,因此得證.
解答:解:(I)易知函數(shù)的定義域?yàn)镽.
==,
當(dāng)x<0時(shí),f(x)>0;當(dāng)x>0時(shí),f(x)<0.∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,0),單調(diào)遞減區(qū)間為(0,+∞).
(II)當(dāng)x<1時(shí),由于,ex>0,得到f(x)>0;同理,當(dāng)x>1時(shí),f(x)<0.
當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),不妨設(shè)x1<x2
由(I)可知:x1∈(-∞,0),x2∈(0,1).
下面證明:?x∈(0,1),f(x)<f(-x),即證.此不等式等價(jià)于
令g(x)=,則g(x)=-xe-x(e2x-1).
當(dāng)x∈(0,1)時(shí),g(x)<0,g(x)單調(diào)遞減,∴g(x)<g(0)=0.

∴?x∈(0,1),f(x)<f(-x).
而x2∈(0,1),∴f(x2)<f(-x2).
從而,f(x1)<f(-x2).
由于x1,-x2∈(-∞,0),f(x)在(-∞,0)上單調(diào)遞增,
∴x1<-x2,即x1+x2<0.
點(diǎn)評(píng):本題綜合考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、等價(jià)轉(zhuǎn)化問(wèn)題等基礎(chǔ)知識(shí)與基本技能,需要較強(qiáng)的推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線(xiàn)x=
π
6
對(duì)稱(chēng),求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案