三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,點E、F分別在AC,AD上,使平面BEF⊥平面ACD,且EF∥CD,則平面BEF與平面BCD所成的二面角的正弦值為 ( )
∵CD⊥平面ABC,∴平面ABC⊥平面ACD,又∵平面
BEF⊥平面ACD,且平面ABC
平面BEF=BE,∴BE⊥平
面ACD,∴BE⊥AC,作BM∥CD,易知∠EBC為所求平
面角.在Rt△ABC中可得
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
一個無蓋的正方體盒子展開后的平面圖如圖所示,
A、
B、
C是展開圖上的三點,則在正方體盒子中,∠
ABC的度數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
一條直線和一個平面所成的角為
,則此直線和平面內(nèi)不經(jīng)過斜足的所有直線所成的角中最大的角是____________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,將Rt△ABC沿斜邊上的高AD折成120
0的二面角C-AD-
,若直角邊AB=
,AC=
,則二面角A-B
-D的正切值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖1所示,在邊長為
的正方形
中,
,且
,
,
分別交
于點
,將該正方形沿
、
折疊,使得
與
重合,構(gòu)成如圖2所示的三棱柱
中
(Ⅰ)求證:
;
(Ⅱ)在底邊
上有一點
,
,
求證:
面
(III)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖∠BAC=90°,等腰直角三角形ABC所在的平面與正方形ABDE所在的平面互相垂直,則異面直線AD與BC所成角的大小是_______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,在正方體ABCD-A
1B
1C
1D
1中,O為底面ABCD的中心,E為C
1C的中點,則異面直線D
1A與EO所成角的余弦值為______.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,PB與平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
AD.
(1)求證:平面PCD⊥平面PAC;
(2)設(shè)E是棱PD上一點,且PE=
PD,求異面直線AE與PB所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知長方體ABCD-A
1B
1C
1D
1中,A
1A=AB,E、F分別是BD
1和AD中點.
(1)求異面直線CD
1、EF所成的角;
(2)證明EF是異面直線AD和BD
1的公垂線.
查看答案和解析>>