【題目】已知上的偶函數(shù),當(dāng)時(shí),.對(duì)于結(jié)論

1)當(dāng)時(shí),;

2)函數(shù)的零點(diǎn)個(gè)數(shù)可以為;

3)若函數(shù)在區(qū)間上恒為正,則實(shí)數(shù)的范圍是

以上說法正確的序號(hào)是______________.

【答案】1)(2

【解析】

由函數(shù)的奇偶性定義、函數(shù)零點(diǎn)個(gè)數(shù)的判斷方法以及函數(shù)與方程的轉(zhuǎn)化思想,不等式恒成立問題的解法,對(duì)選項(xiàng)逐一判斷即可得到結(jié)論.

對(duì)于(1),fx)為R上的偶函數(shù),當(dāng)x0時(shí),,

當(dāng)x0時(shí),,故(1)正確;

對(duì)于(2),令tfx),則ft)=0,因?yàn)?/span>的值不確定,

f0)=0,由ft)=0,可得t01或﹣1,

,可得;由fx)=1時(shí),可得x=﹣22;當(dāng)fx)=﹣1時(shí),可得x=±,此時(shí)函數(shù)有7個(gè)零點(diǎn);

f0)=1,由ft)=0,可得t1或﹣1,

fx)=1時(shí),可得x=﹣220;當(dāng)fx)=﹣1時(shí),可得x=±,此時(shí)有函數(shù)有5個(gè)零點(diǎn);

f0)=-1時(shí),由ft)=0,可得t1或﹣1,

fx)=1時(shí),可得x=﹣22;當(dāng)fx)=﹣1時(shí),可得x=±0,此時(shí)有函數(shù)有5個(gè)零點(diǎn);

不等于以上各值,由ft)=0,可得t1或﹣1,由fx)=1時(shí),

可得x=﹣22;當(dāng)fx)=﹣1時(shí),可得x=±,此時(shí)函數(shù)有4個(gè)零點(diǎn);

綜上,函數(shù)的零點(diǎn)個(gè)數(shù)可為45,7,故(2)正確;

對(duì)于(3),若函數(shù)在區(qū)間[1,2]上恒為正,即為 [12]恒成立,

可得[1,2]恒成立,則當(dāng)時(shí),,解得,所求的范圍應(yīng)為的子集,故(3)錯(cuò).

故答案為:(1)(2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正整數(shù)數(shù)列滿足,對(duì)于給定的正整數(shù),若數(shù)列中首個(gè)值為1的項(xiàng)為,我們定義,則_____.設(shè)集合,則集合中所有元素的和為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有下列四個(gè)命題:

①“相似三角形周長(zhǎng)相等”的否命題;

②“若,則”的逆命題;

③“若,則”的否命題;

④“若,則方程有實(shí)根”的逆否命題;

其中真命題的個(gè)數(shù)是( )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)量監(jiān)督局檢測(cè)某種產(chǎn)品的三個(gè)質(zhì)量指標(biāo),用綜合指標(biāo)核定該產(chǎn)品的等級(jí).若,則核定該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;

(2)在該樣品的一等品中,隨機(jī)抽取2件產(chǎn)品,設(shè)事件為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)均滿足”,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足下列3個(gè)條件:①函數(shù)的圖象過坐標(biāo)原點(diǎn); ②函數(shù)的對(duì)稱軸方程為; ③方程有兩個(gè)相等的實(shí)數(shù)根.

1)求函數(shù)的解析式;

2)令,若函數(shù)上的最小值為-3,求實(shí)數(shù)的值;

3)令,若函數(shù)內(nèi)有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù)

1)當(dāng)時(shí),求在區(qū)間上的最大值;

2)設(shè)函數(shù)在區(qū)間上的最大值,求的解析式;

3)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),,點(diǎn)為曲線上任意一點(diǎn)且滿足.

(1)求曲線的方程;

(2)設(shè)曲線軸交于、兩點(diǎn),點(diǎn)是曲線上異于、的任意一點(diǎn),直線、分別交直線于點(diǎn)、.求證:以為直線的圓軸交于定點(diǎn),并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的中垂線與交于點(diǎn).

(Ⅰ)求點(diǎn)的軌跡的方程.

(Ⅱ)斜率不為0的動(dòng)直線過點(diǎn)且與軌跡交于兩點(diǎn),為坐標(biāo)原點(diǎn).是否存在常數(shù),使得為定值?若存在,求出這個(gè)定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐PABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,ABBCAD,∠BAD=∠ABC=90°.

(1)證明:直線BC∥平面PAD;

(2)若△PCD的面積為2,求四棱錐PABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案