分析 (1)首先對(duì)f(x)求導(dǎo),對(duì)參數(shù)a分類討論從而判斷f'(x)是否大于0即可判斷f(x)的單調(diào)性;
(2)對(duì)?x1,x2∈[2,2e2]都有10+g(x1)≤f(x2)成立可轉(zhuǎn)化為:10+g(x)max≤f(x)min;
解答 解:(1)f(x)的定義域?yàn)椋?,+∞).
f'(x)=$\frac{2a+2}{x}$+4ax=$\frac{2(2a{x}^{2}+a+1)}{x}$
當(dāng)a≥0時(shí),f'(x)>0,故f(x)在(0,+∞)單調(diào)遞增
當(dāng)a≤-1時(shí),f'(x)<0,故f(x)在(0,+∞)單調(diào)遞減;
當(dāng)-1<a<0時(shí),令f'(x)=0,解得x=$\sqrt{-\frac{a+1}{2a}}$
即x∈$(0,\sqrt{-\frac{a+1}{2a}})$ 時(shí),f'(x)>0;x∈$(\sqrt{-\frac{a+1}{2a}},+∞)$ 時(shí),f'(x)<0
故f(x)在 $(0,\sqrt{-\frac{a+1}{2a}})$ 單調(diào)遞增,在 $(\sqrt{-\frac{a+1}{2a}},+∞)$ 單調(diào)遞減;
(2)對(duì)?x1,x2∈[2,2e2]都有10+g(x1)≤f(x2)成立,可知
10+g(x)max≤f(x)min,
根據(jù)(1)可知f(x)為單調(diào)遞增函數(shù),f(x)min=f(2)=(2a+2)ln2+8a+5,
g(x)=$\frac{1}{2}lnx$-$\frac{1}{2{e}^{2}}$ x,g'(x)=$\frac{1}{2x}$-$\frac{1}{2{e}^{2}}$=$\frac{{e}^{2}-x}{2x{e}^{2}}$,所以在[2,e2]為增函數(shù),在[e2,2e2]為單調(diào)減函數(shù),
g(x)max=g(e2)=$\frac{1}{2}ln{e}^{2}$-$\frac{1}{2{e}^{2}}×{e}^{2}$=$\frac{1}{2}$,
(2a+2)ln2+8a+5≥$\frac{1}{2}$+10,
∴a≥$\frac{11-4ln2}{4ln2+16}$,
故所求的參數(shù)a的取值范圍為a≥$\frac{11-4ln2}{4ln2+16}$.
點(diǎn)評(píng) 本題主要考查了利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,以及函數(shù)的極值與轉(zhuǎn)化思想的應(yīng)用,屬中等題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1)k(2k-1) | B. | -(-1)k(2k-1) | C. | -(-1)k+1(2k+1) | D. | (-1)k+1(2k+1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com