設(shè)函數(shù)f (x)=x3-4x+a,0<a<2.若f (x)的三個零點(diǎn)為x1,x2,x3,且x1<x2<x3,則

A.x1>-1           B.x2<0             C.x2>0             D.x3>2

 

【答案】

C

【解析】

試題分析:因?yàn)楹瘮?shù)所以可得

,因?yàn)楫?dāng)時,,在上,,

,,故函數(shù)在上是增函數(shù),在上是減函數(shù),在上是增函數(shù).故是極大值,是極小值.再由f (x)的三個零點(diǎn)為x1,x2,x3,且x1<x2<x3,可得,,.根據(jù),可得

考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值;函數(shù)的零點(diǎn).

點(diǎn)評:本題主要考查函數(shù)的零點(diǎn)的定義,函數(shù)的零點(diǎn)與方程的根的關(guān)系,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的極值,屬于中檔題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求函數(shù)的極值,再根據(jù)f (x)的三個零點(diǎn)為x1,x2,x3,且x1<x2<x3,求得各個零點(diǎn)所在的區(qū)間,從而得出結(jié)論.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2002年全國各省市高考模擬試題匯編 題型:044

設(shè)函數(shù)f(x)=(x-1)(a>0,且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)圖象上的點(diǎn)時,點(diǎn)Q(3x,)是函數(shù)y=g(x)圖象上的點(diǎn).

  

(Ⅰ)寫出函數(shù)y=g(x)的解析式;

(Ⅱ)求不等式g(x)≤f(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣州市2008屆高中教材變式題2:二次函數(shù) 題型:022

設(shè)函數(shù)f(x)=x|x|+bx+c,給出下列4個命題:

①當(dāng)c=0時,y=f(x)是奇函數(shù);

②當(dāng)b=0,c>0時,方程f(x)=0只有一個實(shí)根;

③y=f(x)的圖象關(guān)于點(diǎn)(0,c)對稱;

④方程f(x)=0至多有兩個實(shí)根.

上述命題中正確的序號為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天津市耀華中學(xué)2012屆高三寒假驗(yàn)收考試數(shù)學(xué)理科試題 題型:013

設(shè)函數(shù)f(x)=x|x|+bx+c,則下列命題中正確命題的序號有

①當(dāng)b>0時,函數(shù)f(x)在R上是單調(diào)增函數(shù);

②當(dāng)b<0時,函數(shù)f(x)在R上有最小值;

③函數(shù)f(x)的圖象關(guān)于(0,c)對稱;

④方程f(x)=0可能有三個實(shí)數(shù)根.

[  ]

A.①③

B.①④

C.①②④

D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省云浮羅定中學(xué)2012屆高三11月月考數(shù)學(xué)理科試題 題型:044

已知二次函數(shù)y=g(x)的圖象經(jīng)過點(diǎn)O(0,0)、A(m,0)與點(diǎn)P(m+1,m+1),設(shè)函數(shù)f(x)=(x-n)g(x)在x=a和x=b處取到極值,其中m>n>0,b<a.

(1)求g(x)的二次項(xiàng)系數(shù)k的值;

(2)比較a,b,m,n的大小(要求按從小到大排列);

(3)若m+n≤2,且過原點(diǎn)存在兩條互相垂直的直線與曲線y=f(x)均相切,求y=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏高三第五次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)函數(shù)f(x)=,D是由x軸和曲線y=f(x)及該曲線在點(diǎn)(1,0)處的切線所圍成的封閉區(qū)域,則z=x-2y在D上的最大值為________.

 

查看答案和解析>>

同步練習(xí)冊答案