19.若數(shù)列{an}滿(mǎn)足a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]與{an}分別表示an的整數(shù)部分與小數(shù)部分),則a2016=( 。
A.3023+$\sqrt{3}$B.3023+$\frac{\sqrt{3}-1}{2}$C.3020+$\sqrt{3}$D.3020+$\frac{\sqrt{3}-1}{2}$

分析 由已知求出數(shù)列的前幾項(xiàng),得到數(shù)列的項(xiàng)呈現(xiàn)的規(guī)律得答案.

解答 解:∵an+1=[an]+$\frac{1}{\{{a}_{n}\}}$,且a1=$\sqrt{3}$=1+($\sqrt{3}$-1),
∴a2=[a1]+$\frac{1}{\{{a}_{1}\}}$=1+$\frac{1}{\sqrt{3}-1}$=2+$\frac{\sqrt{3}-1}{2}$,
∴a3=2+$\frac{1}{\frac{\sqrt{3}-1}{2}}$=4+($\sqrt{3}$-1),
∴a4=4+$\frac{1}{\sqrt{3}-1}$=5+$\frac{\sqrt{3}-1}{2}$,
∴a5=7+($\sqrt{3}$-1),
∴a6=8+$\frac{\sqrt{3}-1}{2}$,
∴a7=10+($\sqrt{3}$-1),
∴a8=11+$\frac{\sqrt{3}-1}{2}$,
∴a2016=2016+1007+$\frac{\sqrt{3}-1}{2}$=3023+$\frac{\sqrt{3}-1}{2}$,
故選:B.

點(diǎn)評(píng) 本題是新定義題,考查了數(shù)列遞推式,關(guān)鍵是由數(shù)列前幾項(xiàng)得到數(shù)列的規(guī)律,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若不等式組$\left\{\begin{array}{l}{x≥0}\\{x+3y≥4}\\{3x+y≤4}\end{array}\right.$,所表示的平面區(qū)域被直線(xiàn)y=kx+$\frac{4}{3}$分為面積相等的兩部分,則k的值是$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.函數(shù)f(x)=ax3+bx2-3x 在點(diǎn)x=1 處取得極大值為2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[0,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知直線(xiàn)l1:3x+2y-1=0,直線(xiàn)l2:5x+2y+1=0,直線(xiàn)l3:3x-5y+6=0,直線(xiàn)L經(jīng)過(guò)直線(xiàn)l1與直線(xiàn)l2的交點(diǎn),且垂直于直線(xiàn)l3,求直線(xiàn)L的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.極坐標(biāo)系中,已知圓ρ=10cos$({\frac{π}{3}-θ})$
(1)求圓的直角坐標(biāo)方程.
(2)設(shè)P是圓上任一點(diǎn),求點(diǎn)P到直線(xiàn)$\sqrt{3}x-y+2=0$距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=alnx+blog2$\frac{1}{x}$,若f(2017)=1,則f($\frac{1}{2017}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.(a+x)5展開(kāi)式中x2的系數(shù)為80,則實(shí)數(shù)a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知直線(xiàn)l1:2x+3my-m+2=0和l2:mx+6y-4=0,若l1∥l2,則l1與l2之間的距離為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知向量$\overrightarrow a=(1,1,0)$,$\overrightarrow b=(-1,0,2)$,且$k\overrightarrow a+\overrightarrow b$與$\overrightarrow a$互相垂直,則k=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$-\frac{1}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案