已知可導函數(shù)f(x)(x∈R)的導函數(shù)f'(x)滿足f'(x)>f(x),則不等式ef(x)>f(1)ex的解集是________.

(1,+∞)
分析:由題目要求解的不等式是ef(x)>f(1)ex,變性后得:,由此想到構造函數(shù)g(x)=,求導后結(jié)合f'(x)>f(x),可知函數(shù)g(x)是實數(shù)集上的增函數(shù),然后利用函數(shù)的單調(diào)性可求得不等式的解集.
解答:令g(x)=,
=,
因為f'(x)>f(x),所以g(x)>0,
所以,函數(shù)g(x)=為(-∞,+∞)上的增函數(shù),
由ef(x)>f(1)ex,得:,即g(x)>g(1),
因為函數(shù)g(x)=為(-∞,+∞)上的增函數(shù),
所以,x>1.
所以,不等式ef(x)>f(1)ex的解集是(1,+∞).
故答案為(1,+∞).
點評:本題考查了導數(shù)的運算法則,考查了不等式的解法,解答此題的關鍵是聯(lián)系要求解的不等式,構造出函數(shù)g(x)=,然后利用導數(shù)的運算法則判斷出其導函數(shù)的符號,得到該函數(shù)的單調(diào)性.此題是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

10、已知可導函數(shù)f(x)的導函數(shù)為f′(x),且滿足f(x)=3x2+2xf′(5),則f′(5)=
-30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知可導函數(shù)f(x)的導函數(shù)為g(x),且滿足:①
g(x)-1
x-1
>0
;②f(2-x)-f(x)=2-2x,記a=f(2)-1,b=f(π)-π+1,c=f(-1)+2,則a,b,c的大小順序為(  )
A、a>b>c
B、a>c>b
C、b>c>a
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知可導函數(shù)f(x)為定義域上的奇函數(shù),f(1)=1,f(2)=2.當x>0時,有3f(x)-x•f'(x)>1,則f(-
3
2
)的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知可導函數(shù)f(x)的導函數(shù)f'(x)的圖象如圖所示,給出下列四個結(jié)論:
①x=1是f(x)的極小值點;
②f(x)在(-∞,1)上單調(diào)遞減;
③f(x)在(1,+∞)上單調(diào)遞增;
④f(x)在(0,2)上單調(diào)遞減,其中正確的結(jié)論是
.(寫出所有正確結(jié)論的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知可導函數(shù)f(x)的導函數(shù)為g(x),且滿足:①[g(x)-1](x-2)>0;②f(2-x)-f(x)=2-2x,記a=f(4)-3,b=f(e)-e+1,c=f(-1)+2,則a,b,c的大小順序為( 。

查看答案和解析>>

同步練習冊答案