已知圓C:
x=1+cosθ
y=sinθ
(θ為參數(shù))和直線θl:
x=2++tcosα
y=
3
+tsinα
(其中t為參數(shù),α為直線l的傾斜角)
(1)當α=
3
時,求圓上的點到直線l的距離的最小值;
(2)當直線l與圓C有公共點時,求α的取值范圍.
分析:(1)圓C、直線l化為直角坐標方程,求出圓心到直線的距離,再根據(jù)圓上點到直線的距離最小值一般為圓心到直線的距離減半徑可求出所求.
(2)把直線的參數(shù)方程化為普通方程,把圓的參數(shù)方程化為直角坐標方程,根據(jù)圓心到直線的距離小于或等于半徑,求得tanα≥
3
3
,由此求出傾斜角α的范圍.
解答:解:(1)圓C:
x=1+cosθ
y=sinθ
(θ為參數(shù))的直角坐標方程為(x-1)2+y2=1,
α=
3
時,直線直線l:
x=2++tcosα
y=
3
+tsinα
的直角坐標方程為
3
x+y-3
3
=0
圓心到直線的距離為:
|
3
-3
3
|
2
=
3

所以圓上的點到直線的距離的最小值為
3
-1.
(2)∵直線l的參數(shù)方程為l:
x=2++tcosα
y=
3
+tsinα
(t為參數(shù),α為直線l的傾斜角),
消去參數(shù)t化為普通方程為tanα•x-y-2tanα+
3
=0.
圓C化為直角坐標方程為(x-1)2+y2=1,
表示以C(1,0)為圓心,以1為半徑的圓.
根據(jù)圓心C到直線的距離d=
|-tanα+ 
3
|
1+tan2α
≤1,
解得tanα≥
3
3

再由傾斜角α∈[0,π) 可得,
π
6
≤α<
π
2

故α的取值范圍為[
π
6
π
2
).
點評:本題主要考查把參數(shù)方程化為普通方程,點到直線的距離公式的應用,直線和圓的位置關(guān)系,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

14、已知圓C經(jīng)過點A(2,-1),和直線l1:x+y=1相切,圓心在直線2x+y=0上.則圓C的方程是(x-1)2+(y+2)2=
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=r12(r1>0)與圓C:(x-a)2+(y-b)2=r22(r2>0)內(nèi)切,且兩圓的圓心關(guān)于直線l:x-y+
2
=0對稱.直線l與圓O相交于A、B兩點,點M在圓O上,且滿足
OM
=
OA
+
OB

(1)求圓O的半徑r1及圓C的圓心坐標;
(2)求直線l被圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:
x=1+cosθ
y=sinθ
(θ為參數(shù))和直線l:
x=2+tcosα
y=
3
+tsinα
(其中為參數(shù),α為直線的傾斜角),如果直線與圓C有公共點,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:
x=1+cosθ
y=sinθ
(θ為參數(shù))和直線l:
x=2+tcosα
y=
3
+tsinα
(其中為參數(shù),α為直線的傾斜角),如果直線與圓C有公共點,求α的取值范圍.

查看答案和解析>>

同步練習冊答案