在△ABC中,a、b、c分別為內(nèi)角A、B、C的對邊,已知b=5c,cosA=,則sinB=( )
A.
B.
C.
D.
【答案】分析:利用同角三角函數(shù)的基本關(guān)系求出sinA=,由正弦定理可得 sinB=5sinC.可得sinC=sin(A+B)=cosB+sinB,故有cosB=-5sinC.再由sin2B+cos2B=1 可得
sinC 的值,從而求得sinB的值.
解答:解:在△ABC中,∵cosA=,∴sinA=
∵b=5c,由正弦定理可得 sinB=5sinC.
∵sinC=sin(A+B)=sinAcosB+cosAsinB=cosB+sinB,把sinB=5sinC代入,整理得cosB=-5sinC.
再由sin2B+cos2B=1 可得 sinC=
∴sinB=5sinC=,
故選D.
點(diǎn)評:本題主要考查正弦定理、同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式、兩角和的正弦公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案