設(shè)集合M={0,1,2,3},N={x||x|<3,x為偶數(shù)},現(xiàn)從集合A中隨機(jī)地抽取一個(gè)數(shù)a,從集合B中隨機(jī)地抽取一個(gè)數(shù)b.
(1)計(jì)算a≥1或b≥1的概率;
(2)令ξ=a•b,求隨機(jī)變量ξ的概率分布和期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:(1)由已知得x=-2,0,2,由此能求出a≥1或b≥1的概率.
(2)ξ=a•b的可能取值有-6,-4,-2,0,2,4,6.分別求出相應(yīng)的概率,由此能求出隨機(jī)變量ξ的概率分布和期望.
解答: 解:(1)∵|x|<3,∴-3<x<3.
又x為偶數(shù),∴x=-2,0,2,
∴N={-2,0,2 }.…(2分)
設(shè)a≥1對(duì)應(yīng)的事件為A,b≥1對(duì)應(yīng)的事件為B,
則 P (a≥1或b≥1)=
C
1
3
C
1
4
C
1
2
C
1
3
+
C
1
3
C
1
4
C
1
1
C
1
3
+
C
1
1
C
1
4
C
1
1
C
1
3
=
5
6

∴a≥1或b≥1的概率為
5
6
.…(6分)
(2)ξ=a•b的可能取值有-6,-4,-2,0,2,4,6.
ξ?-6-4-20246
P
1
12
1
12
1
12
6
12
1
12
1
12
1
12
…(9分)
Eξ?=-6×
1
12
+(-4)×
1
12
+(-2)×
1
12
+0×
6
12
+2×
1
12
+4×
1
12
+6×
1
12
=0.…(12分)
點(diǎn)評(píng):本題考查概率的求法,考查隨機(jī)變量ξ的概率分布和期望的求法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=-aln(-x)-(a+1)x.
(1)求f(x)在R上的解析式;
(2)當(dāng)a>-1時(shí),討論f(x)在(0,+∞)上的單調(diào)性,并指出其單調(diào)區(qū)間;
(3)若對(duì)于任意的x∈(0,+∞),f(x)≥-
1
2
x2
恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|
x-1
x+1
<0},B={x||x-b|<1},則“A∩B≠∅”的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α-
π
4
)=
3
5
,α∈(
π
3
4
),求
1+sinα-cos2α
tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(2,4)引圓(x-1)2+(y-1)2=1的切線,則切線方程為(  )
A、4x-3y+4=0
B、3x-4y+4=0
C、x-2或4x-3y-4=0
D、x=2或4x-3y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于直線m、n與平面α、β,有下列四個(gè)命題:
①m∥α,n∥β且α∥β,則m∥n;    
②m⊥α,n⊥β且α⊥β,則m⊥n;
③m⊥α,n∥β且α∥β,則m⊥n;   
④m∥α,n⊥β且α⊥β,則m∥n.
其中正確命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三條邊AB,AC,BC的中點(diǎn)的坐標(biāo)分別是(2,1),(-3,4),(-2,1),則△ABC的重心的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(2x-
π
3
)的單調(diào)遞減區(qū)間是(  )
A、[kπ-
π
6
,kπ+
π
3
],k∈Z
B、[kπ+
π
3
,kπ+
6
],k∈Z
C、[kπ-
π
12
,kπ+
12
],k∈Z
D、[kπ+
12
,kπ+
11π
12
],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足以下關(guān)系式Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2n•an,求數(shù)列{bn}的前n項(xiàng)和Tn
(Ⅲ)設(shè)Pn=4n+(-1)n-1•λ•2an(λ為非零整數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,有Pn+1>Pn恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案