已知橢圓方程
x2
16
+
y2
12
=1,F(xiàn)
是橢圓的左焦點(diǎn),直線l為對(duì)應(yīng)的準(zhǔn)線,直線l與x軸交于P點(diǎn),MN為橢圓的長(zhǎng)軸,過P點(diǎn)任作一條割線AB(如圖),則∠AFM與∠BFN的大小關(guān)系為( 。
分析:當(dāng)AB斜率為0時(shí),顯然∠AFM=∠BFN成立;當(dāng)AB斜率不為0時(shí),設(shè)出直線方程,代入橢圓方程,利用韋達(dá)定理,進(jìn)而可得直線AF,BF的斜率的和為0,從而可得結(jié)論.
解答:解:當(dāng)AB的斜率為0時(shí),顯然∠AFM=∠BFN=0.
當(dāng)AB的斜率不為0時(shí),設(shè)A(x1,y1),B(x2,y2),AB方程為x=my-8,
代入橢圓方程,整理得(3m2+4)y2-48my+144=0
則△=(48m)2-4×144(3m2+4),
∴y1+y2=
48m
3m2+4
,y1y2=
144
3m2+4

∴kAF+kBF=
y1
x1+2
+
y2
x2+2
=
2my1y2-6(y1+y2)
(my1-6)(my2-6)
=
2m×
144
3m2+4
-6×
48m
3m2+4
(my1-6)(my2-6)
=0
∴kAF+kBF=0,從而∠AFM=∠BFN.
綜上可知:恒有∠AFM=∠BFN.
故選C.
點(diǎn)評(píng):本題考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查斜率的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
16
+
y2
12
=1
,雙曲線C2與C1具有相同的焦點(diǎn),且離心率互為倒數(shù).
①求雙曲線C2的方程;
②圓C:x2+y2=r2(r>0)與兩曲線C1、C2交點(diǎn)一共有且僅有四個(gè),求r的取值范圍;是否存在r,使得順次連接這四個(gè)交點(diǎn)所得到的四邊形是正方形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
16
+
y2
4
=1
,過點(diǎn)(2,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點(diǎn).
(1)求切線l的方程;
(2)求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•徐匯區(qū)三模)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
x2
4
+y2=1

(1)若橢圓C2
x2
16
+
y2
4
=1
,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說明理由;
(2)寫出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
(3)如圖:直線l與兩個(gè)“相似橢圓”
x2
a2
+
y2
b2
=1
x2
a2
+
y2
b2
=λ2(a>b>0,0<λ<1)
分別交于點(diǎn)A,B和點(diǎn)C,D,證明:|AC|=|BD|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓方程為
x2
16
+
y2
m2
=1(m>0)
,直線y=
2
2
x
與該橢圓的一個(gè)交點(diǎn)M在x軸上的射影恰好是橢圓的右焦點(diǎn),則m的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案